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Abstract— We propose a learning-based method1 that solves
monocular stereo and can be extended to fuse depth information
from multiple target frames. Given two unconstrained images
from a monocular camera with known intrinsic calibration, our
network estimates relative camera poses and the depth map
of the source image. The core contribution of the proposed
method is threefold. First, a network is tailored for static
scenes that jointly estimates the optical flow and camera
motion. By the joint estimation, the optical flow search space
is gradually reduced resulting in an efficient and accurate flow
estimation. Second, a novel triangulation layer is proposed to
encode the estimated optical flow and camera motion while
avoiding common numerical issues caused by epipolar. Third,
beyond two-view depth estimation, we further extend the above
networks to fuse depth information from multiple target images
and estimate the depth map of the source image. To further
benefit the research community, we introduce tools to generate
photorealistic structure-from-motion datasets such that deep
networks can be well trained and evaluated. The proposed
method is compared with previous methods and achieves state-
of-the-art results within less time. Images from real-world
applications and Google Earth are used to demonstrate the
generalization ability of the method.

I. INTRODUCTION

Due to the rich information in images, structure-from-
motion (SfM) is of vital importance in computer vision and
robotics. Given a set of unconstrained images, SfM aims to
estimate the depth maps and the relative camera poses. Tradi-
tional systems, for example, COLMAP [1], [2], first estimate
the relative poses of cameras by finding correspondences of
sparse feature points and then use the estimated camera pose
to calculate dense depth maps. The extracted sparse features
ignore other information in the images, such as lines, and
does not contribute to the following dense depth estimation.
Scene priors such as structures and object shapes are also
hard to be integrated into the pipeline of traditional methods.

To better utilize image information and exploit context
priors, many methods [3]–[5] have been proposed to solve
monocular stereo (two-view SfM) problems using convolu-
tional neural networks (CNNs). DeMoN [3] is a pioneering
work that first estimates an optical flow and then decomposes
it into a depth map and camera pose. The optical flow, depth
maps, and camera poses are then iteratively refined by a chain
of encoder-decoder networks to handle large viewing angles.
LS-Net [4] uses a predicted depth map and camera pose
as the initialization to iteratively minimize the photometric
reprojection error through a learning-based solver. Different
from LS-Net where the update steps are computed by a
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Fig. 1. Illustration of the proposed method. Given multiple images from
a moving monocular camera, the flow-motion network (green in the figure)
first estimates the optical flow and camera pose between the source image
and each target image. The estimated flow and motion are further fused by
the depth network (gray in the figure) to compute the depth map of the
source image.

network, BA-Net [5] proposes a bundle adjustment layer
to predict the damping factor of the Levenberg-Marquardt
algorithm [6] and calculates the update. To further reduce
the optimization space, BA-Net also parameterizes the depth
map as a linear combination of 128 single-view predicted
basis maps. Utilizing the information of the whole image,
the above methods generate robust camera poses and smooth
depth maps. Although these methods achieve impressive
results compared with traditional methods, they need mul-
tiple iterations (e.g. 15 iterations in LS-Net and BA-Net)
to converge, and most methods (e.g. LS-Net and DeMoN)
estimate the depth map using only one target frame.

In this letter, we improve both the efficiency and accuracy
of the state of the art by incorporating domain knowledge and
further extend the method to fuse multiple depth information.
The first contribution of our work is a joint estimation of the
optical flow and camera poses. We observe that, in monocular
stereo problems, the optical flow between multiview images
is caused by the ego-motion of a moving camera in static
scenes such that the optical flow is constrained along the
epipolar lines. By jointly considering the optical flow and
camera poses, the pixel search space can be gradually
reduced, improving both the efficiency and accuracy. A
novel triangulation layer is proposed to encode the estimated
optical flow and camera motion without numerical problems
caused by unconstrained camera movements. The encoded
information from the triangulation layer is used to estimate
the depth map of the source image. In many applications, the
source image is observed by multiple target images. Beyond
the two-view problem, we further extend the networks to fuse



depth information from multiple target frames. The depth
information from different image pairs is fused by mean-
pooling layers and is then used to predict the depth map.
Figure 1 shows the workflow of our method estimating the
optical flow, camera poses, and depth map given multiple
images. By exploiting multiview observations, robust and
accurate depth maps can be generated.

Training and evaluating learning-based SfM methods re-
quires lots of images with ground truth camera poses and
depth maps. Existing datasets, for example, SUN3D [7] and
Scenes11 [3], contain either low-quality images from RGB-
D cameras or non-photorealistic synthetic images. To train
and evaluate our proposed networks, we develop tools that
can generate unlimited high-quality photorealistic images
with ground truth depth maps and camera poses from the
game Grand Theft Auto V (GTA5). For the benefit of
the computer vision community, we release the tools and
generated datasets as open source.

To summarize, the contributions of the letter are the
following:
• A network that jointly estimates optical flow and camera

poses given two-view images. With the estimated cam-
era poses, the optical flow is constrained on epipolar
lines such that the flow can be regularized, and the
search space is reduced.

• A novel triangulation layer that encodes the estimated
optical flow and camera pose so that the depth network
can triangulate the depth of each pixel without numer-
ical problems.

• The depth network is further extended to fuse depth
information (e.g. flow and motion) from multiple image
pairs. By fusing multiple observations, the depth of the
source image can be estimated more accurately and
robustly.

• Open source tools to customize unlimited photoreal-
istic synthetic images with different daytime, intrinsic
parameters, etc. The extracted images serve as a sup-
plementary dataset to train and evaluate learning-based
SfM methods.

II. RELATED WORK

In this section, we outline related work using neural
networks to estimate the camera poses and depth maps given
two or more images.

DeMoN [3] is a pioneering work that jointly estimates
depth maps and camera poses given two-view images. To
effectively use the two-view observations, DeMoN adapts
FlowNetS [8] to first estimate the optical flow between two
images, and then decomposes the flow into camera poses and
depth maps. To further improve the quality, DeMoN itera-
tively refines the optical flow, camera pose and depth map
using two encoder-decoder networks, and finally upsamples
the depth map into a higher resolution.

CodeSLAM [9] and BA-Net [5] parameterize depth maps
as compact representations such that both the camera motion
and depth map can be solved explicitly by classic optimiza-
tion methods. CodeSLAM uses an auto-encoder and decoder

to represent the depth map as a function of the corresponding
image and unknown code. The unknown code can be solved
jointly with the camera pose by minimizing the photometric
error and geometric error. Benefiting from the flexibility
of the classic optimization, CodeSLAM can simultaneously
estimate multiple depth maps and camera poses. To make
the depth representation suitable for SfM tasks, BA-Net
embeds the bundle adjustment as a differentiable layer into
the network and the whole process is end-to-end trainable.
Unlike CodeSLAM and BA-Net, LS-Net [4] trains a CNN
as a least-square solver to update camera poses and depth
values. Starting from initialized depth maps and camera
poses, these methods need multiple iterations to converge.

Many approaches have been proposed to solve multiview
stereo or camera tracking using neural networks. Given
multiple images with known camera poses and intrinsic cali-
bration, DeepMVS [10] generates cost volumes using learned
feature maps and then estimates the disparity map by fusing
multiple cost volumes. MVDepthNet [11], DPSNet [12] and
MVSNet [13], [14] solve the same reconstruction problem
but differ in the calculation of cost volumes and the structure
of networks. On the other hand, given an RGB-D keyframe,
DeepTAM [15] incrementally tracks the pose of a camera
using synthetic viewpoints and can further estimate the depth
map of the tracked frame.

Here, we propose a method that is different from all
the monocular stereo methods mentioned above. The major
difference is that our method does not iteratively refine
the estimation but rather generates results using only one
forward pass in the flow-motion network and depth network.
The key to the improved efficiency and quality is the joint
estimation of both optical flow and camera motion. The high-
quality optical flow directly establishes precise dense pixel
correspondences between images, enabling accurate depth
triangulation. Also, the proposed method can be extended to
estimate the depth map of the source image by fusing the
information from multiple target images.

III. NETWORK ARCHITECTURE

As shown in Figure 2, the proposed method consists of two
networks: one flow-motion network and one depth network.
Given a source image Is and a target image It of a static
scene, the flow-motion network estimates the optical flow
between two images and the relative camera pose in a coarse-
to-fine manner. With camera poses estimation, the search
space of the optical flow can be gradually reduced along
the epipolar line. Moreover, the aperture problem in optical
flow can be reduced by the epipolar line constraint. With
the estimated optical flow and camera motion, the depth
value of each pixel can be directly triangulated. However,
the triangulation step is not numerically stable around the
epipolar [16]. Instead, we propose a triangulation layer to
encode the information of the estimated optical flow and
camera poses. The layer is processed by the depth network
to estimate the depth map of Is. The depth network can also
be extended to fuse the information from multiple target
images. When the source image is observed by multiple
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Fig. 2. The architecture of the proposed flow-motion network and depth network. Here, only the two-view architecture is shown for simplicity. The
extension to fuse multiple depth information is shown in Figure 5 and is discussed in Section III-C. The flow-motion network jointly estimates the
optical flow and camera poses, and the depth network triangulates the depth of each pixel in the source image. Although both networks are based on
simple encoder-decoder architectures, the proposed joint estimation (Section III-A) and triangulation layer (Section III-B) enables high-quality and efficient
estimation.

target images, the depth map of the source image can be
solved by fusing information from all source-target pairs.

In the following sections, we first explain the design of the
flow-motion network, the depth network that process two-
frame SfM problems. In Section III-C, the depth network
is further extended to fuse multiple depth information and
estimate the depth map of the source image.

A. Flow-Motion Network

A number of works [8], [17]–[19] have shown the success
of using CNNs to estimate dense optical flow between two
images. The proposed flow-motion network shares similar
structures to the state-of-the-art PWC-Net [19] but is tailored
for static scenes and jointly estimates camera poses.

To be robust to lighting and viewing angle changes, input
images are converted into L-level feature pyramids using
a simple CNN. The feature map at the i-th level, f i, is
processed by three simple convolutional layers to generate
the next level feature map f i+1 with the size downsampled
by 2. In this work, L = 6 pyramid levels are used, with f0

being the original 3-channel image. f is and f it are used to
denote the i-th level feature maps of Is and It, respectively.

The optical flow w is estimated from coarse to fine to
handle large pixel displacement. At the i-th level, the optical
flow wi+1 from the i+1-th level is firstly bilinear upsampled
into wi+1

up as an initialization of wi. A cost volume ci is
constructed using f is and f it . Each element in the cost volume
represents the feature similarity between a pixel xs in f is and
a pixel xt in f it ,

ci(xs,xt) =
1

Ni
(f is(xs))

T
f it (xt), (1)

and Ni is the feature dimension of f is. Due to the coarse-
to-fine manner, only a subset of pixels in f it is needed to
calculate the cost volume. The cost volume ci, upsampled
optical flow wi+1

up , and f is are used to predict the optical flow
wi using the DenseNet [20] structure.

The above cost volume construction and optical flow
estimation are repeated from coarse to fine until the optical
flow of the desired resolution is estimated. In this work, we
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𝒇𝑠
𝑖 𝒇𝑡

𝑖 𝒇𝑠
𝑖 𝒇𝑡

𝑖

the cost volume the cost volume

: 𝒙𝑠 :𝒙𝑠 +𝒘𝑢𝑝
𝑖+1(𝒙𝑠) :𝒙𝑠 +𝒘𝑢𝑝,𝑟

𝑖+1 (𝒙𝑠)

: the epipolar line of 𝒙𝑠 : pixels search range

Fig. 3. Differences between the cost volume computation in PWC-Net
(left) and the proposed flow-motion network (right). For each pixel xs in
f is , PWC-Net matches a fixed set of pixels (colored in orange) around
xs + wi+1

up (xs) to generate the cost volume. On the other hand, the
proposed flow-motion network first regularizes the initial flow wi+1

up (xs)
into wi+1

up,r(xs) and matches pixels around the epipolar line.

adapt and improve the above processes by incorporating the
static scene prior and jointly estimating the camera pose.

In different pyramid levels, several convolutional layers
and linear layers are used to predict the pose of the source
frame with respect to the target frame. The pose consists
of a rotation matrix R and a translation vector t. With
the estimated camera motion and calibrated intrinsic K,
the flow vector of each pixel can be regularized along the
corresponding epipolar line and the search space of pixels in
the cost volume can be narrowed down.

In static environments, pixel x in the source image and
its optical flow vector w(x) to the target image have the
following relationship,[

x+w(x)
1

]T
F

[
x
1

]
= 0, (2)

where F = K−T t×RK
−1 is the fundamental matrix. With
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Fig. 4. Example to show the numerical stability in triangulation. Os and
Ot are the optical centers of Is and It, respectively. dmax and dmin are the
maximum and minimum depth of the scene. ei is the corresponding epipolar
line of pixel xi. (a) In stereo configurations, the depth can be reliably
calculated by finding the corresponding point on e0. (b) In unconstrained
monocular stereo problems, the epipolar line e1 of x1 (the epipolar point)
degenerates into a point, thus the depth is unobservable. For pixels near the
epipolar point, such as x2, the epipolar line e2 is very short, and the result
is noise-prone.

the estimated camera pose, the upsampled optical flow of
each pixel wi+1

up (x) can be regularized by projecting the
corresponding point to the epipolar line,

wi+1
up,r(x) =

1

e2x + e2y

[
x′e2y − y′exey − exez
y′e2x − x′exey − eyez

]
− x, (3)

where [ex, ey, ez]
T = F [x, 1]T and [x′, y′]T = x+wi+1

up (x).
Since the corresponding pixels are constrained on epipolar

lines, it is not necessary to match pixels far from the lines.
Also, the aperture problem, where the pixel correspondences
cannot be determined due to the ambiguous matchings, can
be reduced by incorporating the epipolar line constraint.
However, the epipolar lines, which are determined by the
estimated camera poses, may not be accurate enough to rule
out all pixels off the lines. Here, we gradually decrease the
search space from coarse pyramid levels to fine levels. In the
i-th level, the matching pixels of pixel xs is parameterized
as

xt ∈ {xs +wi+1
up,r(xs) +

h(ey,−ex)T + v(ex, ey)
T

e2x + e2y
|

h ∈ [−himax, h
i
max], v ∈ [−vimax, v

i
max]},

(4)

where himax denotes the search range along the epipolar lines
and vimax is the search range vertical to the lines. In total,
(2himax + 1)(2vimax + 1) pixels are matched for each pixel
at the i-th level.

Figure 3 illustrates the difference between the cost volume
computation in PWC-Net and the proposed flow-motion net.
With the static scene prior and the estimated motion, the
estimated optical flow can be regularized, and the size of the
cost volume is reduced, leading to efficient estimation.

B. Depth Network

Given the estimated optical flow x and camera pose R, t,
the pixel depth d can be easily triangulated by solving,

w(x) + x = λ(KRK−1[x, 1]T · d+Kt), (5)

…
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Fig. 5. Extending the depth net to fuse multiple depth information. (a) Two-
view depth estimation network. (b) Multiple depth fusion extension. The
two-view encoder network encodes the depth information of each image
pair into depth codes dci. Multiple codes are pooled into dc′ and the
multiview fusion network takes dc′ to estimate the depth map.

where λ([x, y, z]T ) = [x/z, y/z]T is the dehomogenization
function. However, two drawbacks exist in this triangulation
step. First, the depth is solved independently for each pixel,
thus the overall smoothness and scene priors are ignored.
Second, pixels around the epipolar (the projection of the
target frame’s optical center on the source image) cannot
be triangulated reliably. Figure 4 illustrates the potential
numerical issues in different camera motions.

To solve the above problems, DeMoN uses networks to
refine the triangulated depth maps (with affected depth set
to 0). Here, instead of refining the triangulated depth maps,
we propose an eight-channel layer that encodes all the in-
formation for triangulation. The layer is called triangulation
layer tri, and for each pixel x,

tri(x) = [w(x) + x,KRK−1[x, 1]T ,Kt]T . (6)

The depth network is an encoder-decoder network that
takes the triangulation layer tri, source image Is, estimated
optical flow w and the last layer of the flow-motion network
as input to estimate the depth map of the source image.

C. Multiview Depth Fusion

In real-world applications (e.g. robot navigation), the depth
of the source image can be solved by multiple target images.
Here, we extend the proposed two-view monocular stereo
networks to fuse multiview information. Compared with two-
view image pairs, multiview images bring more information
about the environment structure, thus the fused depth maps
can be more robust and accurate. However, fusing depth
information from multiview images is non-trivial due to the
arbitrary number of image pairs and different depth scales.
Different from CodeSLAM, which fuses the information by



optimization methods, we propose to fuse the multiview
information by a learned network.

Figure 5 shows how the two-view depth net is extended.
The two-view depth net introduced in Sec. III-B is divided
into two parts: two-view encoder and multiview fusion. The
first part independently encodes the triangulation layer tri
of each image pair into multi-resolution depth codes dc.
Depth codes from multiple image pairs, {dc0, ..., dcN−1},
are fused by mean-pooling layers. The fused code of each
pixel dc′(x) is calculated as,

dc′(x) =
1

N

N−1∑
i=0

dci(x). (7)

Using pooling layers to fuse information has been used
in many multiview stereo works (e.g., DeepMVS [10]).
Different from these works, we use multiple pooling layers to
fuse the depth codes at different resolutions such that both the
global information and fine details are preserved. The fusion
network takes the fused depth code dc′ and the source image
Is to estimate the corresponding depth map.

IV. NETWORK DETAILS

A. Optical Flow and Camera Motion

The search space of the cost volume calculation is reduced
gradually from coarse to fine. The flow-motion network
estimates the optical flow from level 5 to level 1. From the
5-th level to the 1-st level, the search steps hmax and vmax

are set to {4, 4, 4, 4, 3} and {4, 4, 4, 2, 1}, respectively. In the
1-st level, only 21 pixels are matched (81 pixels are used in
PWC-Net). The optical flow loss is defined as,

Lflow =

5∑
l=1

∑
x

‖wl(x)− ŵl(x)‖2, (8)

where ŵl is the corresponding ground truth optical flow at
the l-th level.

The camera rotation r is parameterized as the three-
dimension rotation vector: r = θv, where θ is the rotation
angle and v is the rotation axis. Similar to DeMoN, camera
translation t is normalized as a unit vector due to the unob-
servable scale. Since the optical flow on coarse resolutions
cannot provide accurate pixel correspondences, the camera
motion is estimated from level 3 to level 1. With the ground
truth camera motion r̂ and t̂, the motion loss is,

Lmotion =

3∑
l=1

‖rl − r̂‖2 +
3∑

l=1

‖tl − t̂‖2. (9)

B. Depth Estimation

Multiple depth maps are estimated by the depth network
at different resolutions (from level 3 to level 1). We adopt the
depth parameterization from Eigen et al. [21] that the output
of the network is the log depth: log(d) ∈ R. Due to the scale
ambiguity in SfM problems, the scale-invariant depth error
for each pixel x is calculated as,

dle(x) = log(dl)(x) + αl − log(d̂l)(x) (10)

(a) sunny (b) sunset

(c) rainy (d) indoor

Fig. 6. Samples from the GTA-SfM dataset including different weather,
time, and scenes. The flexibility to change the environment and camera
settings improves the usability of the dataset in deep learning research.

where d̂ is the ground truth depth map, and
αl = 1

N

∑
x log(d̂l)(x)− log(dl)(x) scales the estimated

depth maps. Both the depth error Ld and gradient error Lg

are calculated to train the triangulation network,

Ld =
∑3

l=1

∑
x ‖dle(x)‖berHu, (11)

Lg =
∑3

l=1

∑
x

∣∣∇xd
l
e(x)

∣∣+ ∣∣∇yd
l
e(x)

∣∣ , (12)

where ‖·‖berHu is the reverse Huber [22], [23]:

‖x‖berHu =

{
|x| if |x| ≤ 1

x2 if |x| > 1
. (13)

Using the berHu norm, large depth errors are punished by
the L2 norm and small depth errors can also be effectively
optimized by the L1 norm.

V. DATASETS

A. DeMoN Dataset

DeMoN proposes a collection of datasets to train and eval-
uate deep networks. The dataset contains images from mul-
tiple sources, such as RGB-D cameras [7], [24], multiview
SfM results [1], [2], [25], [26], and synthetic images [3].
In total, the DeMoN dataset contains 57k image pairs for
training and 354 pairs for testing.

Although the DeMoN dataset has been widely used in
previous works [3]–[5], it contains several limitations. First,
depth maps from RGB-D cameras are not synchronized with
the color images and only provides less than 10 meters depth
measurements. Second, most of the camera poses of the real-
world images are calculated by optimization-based methods
which can be affected by image noises or outlier features.
Lastly, the rendered synthetic images in the dataset are not
photorealistic. All these aspects limit the performance of the
trained networks.

B. GTA-SfM Dataset

To overcome the limitations in the DeMoN dataset, we
propose the GTA-SfM dataset as a supplement. The dataset is
rendered from GTA-V, an open-world game with large-scale
city models. Thanks to the active community, we develop



tools to extract unlimited photorealistic images with depth
maps and camera poses. The extracted depth maps provide
depth measurements for all objects in the images, including
fine structures or reflective surfaces. We extracted 71k pairs
of images for training and 5k pairs for testing. Training and
testing dataset do not share common scenes. Different from
the DeMoN dataset, one source image can have multiple
target images, thus the multiview depth fusion can be tested.

A similar dataset, MVS-SYNTH, is released by Deep-
MVS [10] using graphics debugging tools. Compared with
MVS-SYNTH, GTA-SfM tools can freely set the camera
FOV, weather, and daytime such that the dataset diversity
and usability are improved. Also, the camera trajectory is
manually annotated that cameras move with large translation
and rotation. Figure 6 shows samples from the proposed
dataset.

VI. EXPERIMENTS

In this section, we extensively evaluate the performance
of the proposed flow-motion network and depth network.
We first compare the proposed network with the previous
works [3]–[5] on two-view image pairs using the DeMoN
dataset. Then, the depth fusion performance is evaluated us-
ing the proposed GTA-SfM dataset. The effectiveness of the
proposed flow-motion joint estimation and the triangulation
layer tri is also demonstrated in the ablation study. We
further demonstrate the generalization ability of the method
using real-world images and Google Earth images.

A. Evaluation Metrics

Different metrics are used to evaluate the estimated camera
motion and depth maps. We follow the evaluation method
used in DeMoN. The rotation error is defined by the relative
angle between the estimated camera rotation and the ground
truth rotation. Due to the scale ambiguity in SfM problems,
the translation error is defined by the angle between normal-
ized translation vectors. For the depth evaluation, estimated
depth d is first optimally scaled [3], then three depth metrics
are calculated,

L1-inv(d, d̂) = 1
N

∑
x

∣∣∣1/d(x)− 1/d̂(x)
∣∣∣, (14)

sc-inv(d, d̂) =
√

1
N

∑
x z(x)

2 − 1
N2 (

∑
x z(x))

2, (15)

L1-rel(d, d̂) = 1
N

∑
x

∣∣∣d(x)− d̂(x)∣∣∣ /d̂(x), (16)

where z(x) = log(d(x))− log(d̂(x)), and N is the pixel number.

B. Two-view Evaluation

We train the flow-motion network and the depth network
using only the DeMoN dataset for a fair comparison. Note
that DeMoN is trained with a larger dataset including other
synthetic images. Images are resized to 320 × 256 in the
experiments. The flow-motion network was trained for 750k
steps with the Adam optimizer [27]. With the trained flow-
motion network, the depth network is trained for 260k steps.
According to the model size, the mini-batch size is set to
16 for the flow-motion network and 24 for the triangulation

TABLE I
COMPARISON ON TWO-VIEW PROBLEMS

Depth Motion

Method L1-inv sc-inv L1-rel Rotation Translation

M
V

S

SIFT 0.056 0.309 0.361 21.180 60.516

DeMoN 0.047 0.202 0.305 5.156 14.447

LS-Net 0.051 0.221 0.311 4.653 11.221

BA-Net 0.030 0.150 0.080 3.499 11.238

Ours 0.027 0.177 0.116 3.093 7.207

S
ce

ne
s1

1

SIFT 0.051 0.900 1.027 6.179 56.650

DeMoN 0.019 0.315 0.248 0.809 8.918

LS-Net 0.010 0.410 0.210 0.910 8.210

BA-Net 0.080 0.210 0.130 1.298 10.370

Ours 0.015 0.268 0.179 0.615 5.331

R
G

B
-D

SIFT 0.050 0.577 0.703 12.010 56.021

DeMoN 0.028 0.130 0.212 2.641 20.585

LS-Net 0.019 0.090 0.301 1.010 22.100

BA-Net 0.008 0.087 0.050 2.459 14.900

Ours 0.010 0.158 0.107 1.570 11.163

S
U

N
3D

SIFT 0.029 0.290 0.286 7.702 41.825

DeMoN 0.019 0.114 0.172 1.801 18.811

LS-Net 0.015 0.189 0.650 1.521 14.347

BA-Net 0.015 0.110 0.060 1.729 13.260

Ours 0.009 0.105 0.076 1.494 12.049

network. Both learning-based methods (DeMoN, LS-Net,
and BA-Net) and a classic method are compared in the
experiment. The classic method is proposed and evaluated in
DeMoN that solves camera poses by the normalized 8-point
algorithm [28] (using SIFT features) followed by a reprojec-
tion error minimization. The depth maps are estimated using
plane sweep stereo and semi-global matching [29].

Table I and Figure 7 show the results of both depth and
motion comparison. Due to the flow-motion joint estima-
tion, the proposed method achieves the best camera motion
estimation in most of the cases. The proposed depth network
also achieves consistently better performance compared with
DeMoN. Compared with BA-Net which iteratively refines
the results (95ms in total), our method generates consistently
better camera poses, and competitive depth maps without any
iterations (42ms in total). As shown in Figure 7, due to the
triangulation layer that encodes the geometric information,
both near and distant objects are reconstructed accurately.

C. Depth Fusion Evaluation

Since the DeMoN dataset only provides two-view image
pairs, we use the proposed GTA-SfM dataset to train and
evaluate the multiview depth fusion performance. We first
train the flow-motion network using two-view image pairs
for 210k steps and then train the extended multiview fusion
network for 130k steps.

We first evaluate the quality of estimated depth maps using
different numbers of target images. We also compare the
depth net with DeepMVS [10] which is also trained using
images from GTA5. DeepMVS takes ground truth camera
poses as input. For each number of target images, we ran-
domly sample 300 pairs and compute the mean depth error.
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Fig. 7. Qualitative results on the DeMoN database. From left to right: source image, estimated optical flow, estimated depth map, L1-rel error map, and
L1-rel error of DeMoN estimated depth map. The error map is JET color coded. As shown, our method generates high-quality optical flow and depth
maps. With the proposed triangulation layer, the depth maps have less L1-rel errors.

Table II shows the depth quality given different numbers of
target images. Clearly, the depth quality improves when more
images are observed, which shows the effectiveness of the
multiview fusion and matches the experience from classic
SfM methods. We also visualize estimated depth maps for
qualitative comparison in Figure 8. Our method estimates
smooth and detailed depth maps and DeepMVS estimates
discrete depth maps with outliers.

TABLE II
DEPTH MAP ERROR ON GTA-SFM DATASET.

Depth Error

View Num L1-inv (1e-3) sc-inv L1-rel
Ours DeepMVS Ours DeepMVS Ours DeepMVS

2 6.19 16.6 0.213 0.526 0.145 0.766
3 6.07 15.6 0.207 0.496 0.137 0.753
4 5.36 15.1 0.192 0.475 0.124 0.735
5 5.68 14.8 0.192 0.465 0.123 0.723
6 4.86 14.8 0.181 0.464 0.114 0.729

Source Image Ours DeepMVS

Fig. 8. Quality comparison of generated depth maps by the proposed
method and DeepMVS. Each source image is observed by 6 target images,
and DeepMVS is provided with ground truth camera poses.

D. Ablation Study
Here, we study the effectiveness of the contributions: the

flow-motion joint estimation and the triangulation layer.

Joint Estimation To evaluate the importance of the epipo-
lar line constraint and search space reduce, we remove the
camera pose estimation in middle levels and the camera
motion is estimated using the final flow estimation. Without
the epipolar line constraint, 81 pixels (the same as PWC-Net)
are searched at each level. As shown in Table III, the joint
estimation improves both the optical flow and camera pose
estimation.

TABLE III
EFFECTIVENESS OF THE JOINT FLOW-MOTION ESTIMATION

Rotation Error Translation Error Flow Error
original 1.879 10.307 3.472

w/o joint 2.043 11.703 3.567

Triangulation Layer The triangulation layer is proposed
to encode the estimated optical flow and camera motion
without any numerical instability. To demonstrate the effec-
tiveness, we replace the triangulation layer with a directly
triangulated depth map. Similar to DeMoN [3], NaN values
are set to 0. Both the networks are trained with the same
flow-motion network as the front-end for 50 epochs. The
comparison is shown in Table IV. With the proposed tri,
depth network can better exploit estimated optical flow and
camera poses.

TABLE IV
EFFECTIVENESS OF THE TRIANGULATION LAYER.

L1-inv sc-inv L1-rel
original 0.015 0.195 0.134
w/o tri 0.017 0.200 0.140

E. Generalization Ability

To test the generalization ability of the proposed method,
we further use the method to estimate depth maps of images
from different sources. Figure 9 shows estimated depth maps
of images taken with DJI Phantom 4 (outdoor) or a handheld
camera (indoor). Figure 10 shows estimated depth maps of
images from Google Earth. The depth map of each source
image is fused from 5 or 6 target images. Because the pro-
posed method first builds high-quality pixel correspondences



Fig. 9. Generate the proposed method to real-world images.

Fig. 10. Generate the proposed method to Google Earth images.

and then triangulate the depth of each pixel, it can effectively
utilize multiview observations and generalizes well to other
images. More details are in the supplementary material.

VII. CONCLUSION AND FUTURE WORK

In this letter, we propose a flow-motion network and a
depth network that can estimate the camera motion and
depth map given multiple motion stereo images. Both the
networks are designed carefully to exploit the multiview
geometric constraints among optical flow, camera motion and
depth maps. We further extend the depth network to fuse
multiple depth information into a depth map. To enlarge the
available datasets, an open-source tool is proposed to extract
unlimited photorealistic images with ground truth camera
poses and depth maps. In the future, we plan to further
develop the method by incorporating graph networks so that
it can simultaneously estimate all camera poses and depth
maps given a set of images.
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