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Abstract— This supplementary material provides more de-
tails about the proposed method, training, and dataset. More
qualitative results of the experiments are provided as a sup-
plement to the main letter. To demonstrate the generalization
ability of the network and the effectiveness of the GTA-SfM
dataset, the trained network is also directly applied to unseen
scenes. Finally, we discuss the advantages and limitations of the
proposed method.

I. NETWORK DETAILS

In this section, we introduce more details in the flow-
motion network and depth network. The depth observability
of the epipolar point is also discussed in this section.

A. Flow Regularization

With an estimated optical flow w, a regularized flow wr,
is calculated such at the corresponding pixels are constrained
on epipolar lines. For each pixel xs on the source image, the
regularized flow wr(xs) is calculated by

argmin
wr(xs)

‖wr(xs)−w(xs)‖2

subject to
[
xs +wr(xs)

1

]T
F

[
xs

1

]
= 0

. (1)

wr(xs) can be solved as Equation 3 in the main letter.

B. Pixel Search Space

F [xs, 1]
T is the epipolar line on the target image. For

notational simplicity, let [ex, ey, ez]
T = F [xs, 1]

T . h =
[ey,−ex]/(e2x + e2y) is the normalized vector of the epipolar
line direction. One the contrary, v = [ex, ey]/(e

2
x + e2y) is

the vector perpendicular to h. With h and v, we define the
search space in the target feature map ft as Equation 4 in
the main letter.

C. Depth Observability

The epipolar point in the source image is xe = λ(−KR−1t).
For any pixel depth d, the point is projected onto the target
image as the same point,

xt = λ(KRK−1[xe, 1]
T · d+Kt)

= λ(KRK−1[λ(−KR−1t), 1]T · d+Kt)

= λ(Kt)

, (2)

thus the depth d is unobservable.
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For the stereo configuration, xe is at infinity so that
all pixels in the image can be triangulated. However, in
some unconstrained SfM cases, the epipolar point is on the
image and cannot be triangulated directly. DeMoN [1] uses
networks to refine triangulated depth maps with NaN values
set to 0. Li et. al. [2] set pixels around the camera epipolar
to zero. We believe the proposed triangulation layer is an
alternative solution.

II. TRAINING

Since the proposed method decouples the two-view SfM
problem into flow-motion estimation and depth triangulation,
we train the two networks separately. The flow-motion
network is first trained and then is used to train the depth
network with weight fixed. Adam optimizer [3] is used and
the initial learning rate is set to 1e-4. We half the learning
rate when the error plateaus. Only color augmentation is used
in the training.

III. GTA-SFM DATASET

In this letter, we propose a GTA-SfM dataset which is used
for the network training. A similar dataset, MVS-Synth, is
also rendered in GTA5 environment. In MVS-Synth, cameras
usually move randomly with small translations. On the
contrary, in the proposed dataset, the trajectory is manually
defined that cameras move in large translations and rotations.

We provide samples of the dataset in Figure 1. As shown
in the figure, the proposed dataset is more similar to that of
SfM applications.

IV. EXPERIMENTS

A. Two-view Evaluation

Pose Estimation Camera poses are estimated using optical
flow in different resolutions. Here, we study the pose esti-
mation quality together with the corresponding optical flow
quality. The result is shown in Table I. At finer pyramid
levels, the error of both optical flow and camera pose
estimation decreases. However, contrary to the experience
from classic SfM methods, the camera pose estimation is still
better than SIFT even the optical flow resolution is 40× 32.
This can be explained by the dense pixel correspondences
from the optical flow.

Depth Estimation As shown in Figure 2, we provide more
qualitative results of our method on the DeMoN dataset.
In MVS sequence, the depth net has difficult estimating
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Fig. 1. Compare the proposed GTA-SfM dataset and previous MVS-Synth dataset. The trajectory of the camera in the proposed dataset contains large
translation and rotation.

TABLE I
CAMERA POSE AND OPTICAL FLOW ESTIMATION QUALITY AT

DIFFERENT PYRAMID LEVELS.

Level Resolution Flow Err. Rot. Err. Trans. Err.
0 160×128 3.168 1.491 8.517
1 80×64 3.269 1.566 8.559
2 40×32 3.707 1.776 10.630

the structure of trees such as the second, and the fourth
row. These trees usually have very complex structures and
introduce occlusions. Such structures and are difficult even
for offline methods (the ground truth also misses the trees).

B. Depth Fusion Evaluation

Qualitative Results Multiview images bring more struc-
ture information of the scene, thus the depth map estimation
can be robust and accurate. Figure 3 illustrates the quality
of the depth estimation given different numbers of target
images. The depth estimation improves when more target
images are given to the depth network. Take the sample (b)
and (d) as examples, the fine structures of trees and poles
are well recovered by fusing multiple image pairs.

Runtime Comparison Table II shows the runtime com-
parison between our method and DeepMVS [4] given differ-
ent numbers of target images (all measured with the same
resolution). As shown in the table, our method is much more
efficient compared with DeepMVS and scales well w.r.t the
number of target images: from 2 target images to 6 target
images, the time grows by 26% in our method and 118% in
DeepMVS.

TABLE II
ESTIMATION TIME COMPARISON

Target Image Num. 2 3 4 5 6
Ours (ms) 49 53 53 57 62

DeepMVS (s) 11 14 17 21 24

Quantitative Results Image pairs are randomly sampled
to compare the performance of our method and DeepMVS.
Each source image is observed by three target images.
DeepMVS is provided with ground truth camera poses and
takes more time to estimate depth maps. The results are

shown in Figure 4. At the right side of each sample, we
calculate the L1-inv, sc-inv, L1-rel error of the estimated
depth maps. Since depth maps from DeepMVS contain many
outliers, we remove the maximum and minimum disparities
before the evaluation. As shown in the figure, our method
estimates smooth depth maps and is more accurate in most
of the cases.

Generalization Ability To demonstrate the generalization
ability of the model and the effectiveness of the proposed
GTA-SfM dataset, we apply the GTA-SfM trained models
directly to images from real worlds and Google Earth.
Figure 5 and Figure 6 shows the estimated depth maps and
point clouds of aerial photographs and indoor images. In
Figure 7 and Figure 8, the trained model is further applied
to images collected in Google Earth. Both architectures
and natural scenes from different locations are covered in
the experiment. As shown in the figures, even trained with
synthetic images, our method can estimate depth maps from
unseen scenes.

V. ADVANTAGE AND LIMITATION

Key to the proposed method is the carefully designed flow-
motion network. The high-quality optical flow and camera
motion enable accurate and efficient depth triangulation. On
the other hand, many prior works (e.g., LS-Net [5] and
CodeSLAM [6]) estimate the depth maps and camera poses
by iteratively minimizing the reprojection error. Such refine-
ments are prone to local minimums and brightness changes in
the images. We have demonstrated that the proposed method
generates accurate camera poses and depth maps with less
forward-time.

Although achieving state-of-the-art results, the proposed
method relies on high-quality optical flow estimation thus
occlusion is challenging for the method. In Figure 9, we
show the occlusion problem in the MVS sequence. Another
reason that makes such complex occlusion difficult for the
network is the supervision missing from the ground truth
depth maps, which also motivates us to propose the GTA-
SfM dataset such that networks can be correctly trained and
evaluated.
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Fig. 2. Depth map estimation of the DeMoN dataset. For each sample, from left to right: source image, target image, ground truth depth map, estimated
depth map, and the L1-rel error map.
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Fig. 3. Depth map quality given different numbers of target images. For each sample, the up row shows the source image Is, and five target images
(from It,1 to It,5). The middle row shows the ground truth depth map and estimated depth maps with different target images. The bottom row shows the
L1-rel error maps of the estimation. For example, from left to right, the fourth column shows target image It,3, estimated depth map which uses Is, It,1,
It,2, and It,3 as input, and the corresponding error map.
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Fig. 4. Depth comparison between our method and DeepMVS using randomly sampled images. The right side is the calculated depth error. Best results
are highlighted in bold. As shown, our method estimates smooth and detailed depth maps, and is much more efficient than DeepMVS.



Fig. 5. Applying the GTA-SfM trained models to aerial photographs and indoor images. From left to right in each row is the source image, target images,
and the estimated depth map. The source image on the third row is observed by four target images, and other source images are observed by six target
images.



Fig. 6. Corresponding point cloud visualization of the estimated depth maps in Figure 5. In each sample, left is the source image and right is the rendered
point cloud. Pixels with depth larger than 200 are considered as the sky and not visualized.
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Fig. 7. Applying the GTA-SfM trained models to reconstruct images from Google Earth. Different scenes are used to show the generalization ability of
the proposed method.



Fig. 8. Point cloud visualization of reconstructed images from Google Earth.
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Fig. 9. Occlusion problem in the MVS sequence. Our method utilizes the multiview observations to triangulate the depth of each pixel thus the depth of
occluded parts is difficult to be estimated. Even ‘ground truth’ method cannot deal with such occlusion problems.


