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Abstract— State-of-the-art monocular dense mapping meth-
ods usually divide the image sequence into several separate
multi-view stereo problems thus have limited utilization of
the information in multi-baseline observations and sequential
depth estimations. In this paper, two core contributions are
proposed to improve the mapping performance by exploiting
the information. The first is an adaptive baseline matching cost
computation that uses the sequential input images to provide
each pixel with wide-baseline observations. The second is a
frame-to-frame propagated depth filter which integrates the
sequential depth estimation of the same physical point in a
robust probabilistic manner. Two contributions are integrated
into a monocular dense mapping system that generates the
depth maps in real-time for both pinhole and fisheye cameras.
Our system is fully parallelized and can run at more than 25 fps
on a Nvidia Jetson TX2. We compare our work with state-of-
the-art methods on the public dataset. Onboard UAV mapping
and handhold experiments are also used to demonstrate the
performance of our method. For the benefit of the community,
we make the implementation open source1.

I. INTRODUCTION

Estimating the dense depth maps using cameras is im-
portant in robotic applications. Compared with widely used
stereo systems, monocular dense mapping systems have
multiple advantages. First, the size and power consumption
of one camera are lower. Second, no extrinsic calibration
between cameras is needed. On the contrary, the extrinsic
relationship in stereo systems needs to be calibrated and
maintained carefully. And lastly, the multi-baseline obser-
vations of a scene can be utilized for more robust and
precise depth estimation. While short-baseline observations
can remove the depth ambiguity caused by repeated patterns,
large-baseline observations can improve the accuracy of
the estimation [1]. These advantages of monocular dense
mapping systems make them suitable for robots, especially
for aerial robots, whose size, power and payload are limited.

Recently, many methods (e.g., REMODE [2] and
DTAM [3]) have been proposed to deal with the monocular
dense mapping problem. These methods divide the input
image sequence into several independent multi-view stereo
problems. In these methods, the input image is compared
with one or several selected images (a.k.a. measurement
frames), and a depth estimation is generated if enough pixels
are converged or the baseline is large enough. Although these
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(a) One Frame in UAV Fisheye Mapping

(b) One Frame in UAV Pinhole Mapping

(c) legend of colored depth map

Fig. 1. Fisheye and pinhole mapping on a UAV. Fig.1(a) and Fig.1(b) show
mapping on a fisheye camera and pinhole camera in a lab environment.
The input image and color-coded (using Fig.1(c)) depth image are shown
on bottom. Corresponding point clouds are shown in different views. Our
method can generate almost outlier free depth maps in real-time for every
frame. Note that our method deals with depth discontinuity and high
distortion well, for example, boxes, screen and celling regions.

methods generate dense depth maps, there are two problems
that limit the utilization of the sequential information in
the input images and estimated depth maps. First, there
is a trade-off between the image overlap and the baseline
length when selecting measurement frames. Wide-baseline
measurement frames can improve the depth estimation, but
only a small fraction of pixels can be estimated due to small
overlaps. On the other hand, the depth cannot be accurately
computed with short-baseline measurement frames although
there exist large overlaps. Second, the sequential depth maps
of the same scene are not fused to refine estimations and
reject outliers. Depth consistency is used in some methods
(e.g., [4]) to detect outliers. However, not all the previous
depth estimations are exploited to detect outliers, and the



depth maps are not refined in these methods.
In this paper, an adaptive baseline matching cost computa-

tion and an inter-frame propagated depth filter are proposed
to address the above problems. An “age-map” is maintained
in our system to record the number of previous frames each
pixel is observed in. During the matching cost computation,
the measurement frames are selected specifically for each
pixel according to the pixel “age”. Wide-baseline observa-
tions of pixels are utilized, and the overlap is ensured. A
probabilistic depth filter is propagated from frame to frame to
fuse the current depth estimation with previous estimations.
The depth estimation is refined, and outliers are detected
during the fusion. We integrate the proposed matching cost
computation method and the depth filter into a monocular
dense mapping system which can generate high-quality dense
depth maps.

Benefitting from the proposed adaptive baseline matching
cost computation and the propagated depth filter, our system
outperforms state-of-the-art monocular mapping methods re-
garding accuracy on the public dataset [5] and achieves real-
time performance on portable devices. More onboard UAV
mapping (Fig. 1) and handhold mapping (Fig. 8) experiments
are used to demonstrate the performance of our method.

The contributions of this paper are the following:
• an adaptive baseline matching cost computation that

utilizes the information in sequential input images. The
matching cost of each pixel is computed using avail-
able wide-baseline observations in the previous input
images while the image overlap is ensured. The com-
mon dilemma between the large-baseline measurement
frames and the image overlaps is solved by the proposed
cost computation method.

• an inter-frame propagated depth filter that fuses the
sequential depth estimations. Depth maps are fused in
a robust probabilistic way in which estimations are
refined, and outliers are detected.

• an open source monocular dense mapping system that
generates depth maps using the sequential information
of the input images by the proposed adaptive baseline
cost computation and the propagated depth filter. The
system supports both pinhole and fisheye cameras and
runs in real-time even on portable devices, such as
Nvidia TX2.

II. RELATED WORK

Many methods have been proposed to solve the real-time
monocular semi-dense and dense mapping problem.

LSD-SLAM [6] and Multi-level Mapping [7] are proposed
to estimate the camera motion and build semi-dense maps.
The estimated semi-dense maps cover areas with rich textures
but are not sufficient for robot navigation.

DTAM [3] and VI-MEAN [8] are two methods that
estimate the depth map by minimizing an energy function.
Multiple images are selected as measurement frames to con-
struct the cost volume for a robust and accurate estimation.

However, the baseline of the measurement frames is limited
to ensure enough overlaps. DTAM [3] uses a total variation
to optimize the energy and requires a desktop graphics
processing unit (GPU) due to the expensive computation.
VI-MEAN [8] adopts the method of semi-global matching
(SGM) [9] to generate the depth map. Because of the 4-path
SGM, VI-MEAN [8] suffers from the “streaking” artifacts
in the estimation.

3D Modeling on the Go [4] regard the reconstruction as a
dense two-view stereo matching problem. The input image
is compared with a selected frame to estimate the depth.
The two-view stereo matching is efficient but generates
noisy depth maps due to the depth ambiguity in low-texture
regions and occlusions. [4] uses an extended Kalman filter
to integrate the depth estimations over time. Although the
sequential depth estimation is fused, the output still contains
outliers and need a variety of heuristically designed filters
(e.g., consistency over time) to detect.

REMODE [2] models estimated depth as a probabilistic
distribution and carries out a L1-norm total variation smooth
before the output. The probabilistic model of each pixel is
robust to outlier update and can give out the certainty of
each estimation. CNN-SLAM [10] combines LSD-SLAM [6]
with predicted depth using deep learning methods. The
combination enables CNN-SLAM to generate dense maps
and robust odometry estimation. However, the application
domain is limited to the training set of depth prediction
networks.

Several aspects distinguish our algorithm from all the
methods mentioned above. Firstly, our method utilizes the
sequential information in both the matching cost computation
and the depth refinement. Benefitting from the adaptive
baseline matching, the baseline of the measurement frames
for each pixel is not limited as long as the pixel is visible.
The propagated depth filter fuses sequential estimations and
detects outliers in a probabilistic way. Secondly, our method
uses a parallelized belief propagation to extract the depth
map from the computed matching cost. The 2D global
optimization generates smooth and accurate depth estima-
tions without the “streaking” artifacts. Lastly, our method is
applied to both pinhole and fisheye cameras.

III. SYSTEM OVERVIEW

Like the classic stereo matching pipeline, our monocular
dense mapping system consists of three modules: adaptive
baseline matching cost computation (Section IV-B), belief
propagation-based depth extraction (Section IV-C), and depth
refinement using inter-frame propagated depth filter (Sec-
tion IV-D).

The pipeline of the whole system is shown in Fig. 2. For
each input image, the “age-map” and the depth filter will
propagate into the input frame. The matching cost is calcu-
lated for pixels using the specifically selected measurement
frames based on the “age-map”. The depth extraction module
extracts the depth of pixels on regular grids from the cost
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Fig. 2. An overview of our system. The “age-map” and the probabilistic
depth filter are propagated from frame to frame maintaining the sequential
information of the input images and the depth estimations.

volume using sped up belief propagation and interpolate it
into full dense depth maps. Finally, the depth filter fuses
the extracted depth with former depth estimations in a
probabilistic way. Inlier pixels are refined, and outlier pixels
are deleted.

IV. MONOCULAR DENSE RECONSTRUCTION

A. Preliminaries

Let the transformation Tw,k ∈ SE(3) be the pose of the
camera frame with respect to the world frame w when taking
the k-th image. Denote the k-th intensity image as Ik : Ω ⊂
R2 7→ R. A 3D point xc = (x, y, z)T in the camera frame
can be projected into the image as pixel u := (u, v)T ∈ Ω
using the camera projection function: π(xc) = u. Also, a
pixel can be back-projected as a 3D point: xc = π−1(u, d)
where d is the depth of the pixel u. The projection function
π(·) and the back-project function π−1(·) depends on the
camera model applied in the system.

An “age-map” is maintained in our system recording the
frame number a pixel can be tracked backwards the image
sequence. Denote the “age-map” of Ik as Ak : Ω ⊂ R2 7→ N.
Ak(u) means that that pixel u is visible in every frame from
Ik−Ak(u) to Ik.

The input of our monocular dense mapping is a sequence
of {Ik,Tw,k} pair and the output is a sequence of the depth
estimation corresponding to Ik. We assume that the metric
camera poses are obtained by the monocular visual-inertial
system (e.g., VINS-MONO [11]). The bundle optimization
of inertial measurements and visual observations makes the
camera pose estimation accurate with the metric scale for
monocular dense mapping.

B. Adaptive Baseline Matching Cost Computation

Different from widely used stereo mapping setup, monoc-
ular dense mapping systems benefit from multi-baseline
observations of each pixel.

To maximally utilize the large-baseline observation for
each pixel instead of simply accumulating input frames like
DTAM [3], we designed a novel matching cost computation
method that compares each pixel with former input images
according to its visibility in the image sequence. For pixel

u in frame Ik, the matching cost at depth d is defined as

C(u, d) =
1

|M(u)|
∑

Im∈M(u)

SAD(Im, Ik,u, d), (1)

where M(u) is the measurement frame list selected for
pixel u. For each selected frame Im and depth d, the
pixel u in frame Ik is projected into frame Im: u′ =
π(Tm,wT

−1
k,wπ

−1(u, d)). SAD(Im, Ik,u, d) stands for sum
of absolute difference. It simply calculates the similarity of
a 3× 3 patch centered at u′ and u in image Im and Ik.

The depth is evenly sampled on the inverse depth space
to construct the matching cost volume. Let dmax and dmin

denote the maximum and the minimum distance sampled,
respectively. And Nd is the total sampled depth number.
Then the sampled depth d and the corresponding index l
has relationship

1

d
= (

1

dmin
− 1

dmax
)

l

Nd − 1
+

1

dmax
, (2)

where l ∈ [0, Nd − 1], l ∈ N.
One of the core contributions that distinguishes our

method from other monocular dense mapping methods is
the frame select function M(u). In our method, M(u)
evenly samples 10 frames from the oldest frame to the latest
frame in which the pixel u is observed. For pixels that are
observed in less than 10 frames, M(u) contains the latest
10 frames for a robust estimation. Given the “age-map” Ak,
10 measurement frames are selected for pixel u as

M(u) = {Ibk−Ak(u)×i/10c | i ∈ {1, 2 · · · 10}} (3)

Since the pixel u is observed in every measurement frame
Im ∈M(u), the matching cost can always be computed. And
Ik−Ak(u), Ibk−Ak(u)/10c is the longest and shortest baseline
observation respectively for cost computation if the camera
moves in one direction.

Fig. 3 shows how the “age-map” propagates and helps the
measurement frame selection. The maintenance of the “age-
map” will be discussed in Section IV-D.4.

C. Belief Propagation-based Depth Extraction
In this section, a depth map is extracted from the cost

volume built in Section IV-B. While texture areas may be
estimated by the winner-takes-all strategy, textureless areas
cannot be determined solely by the matching cost. To handle
regions with low-texture or even no-texture, we adopt a
belief propagation-based depth extraction to generate high-
quality smooth depth maps. The belief propagation is parallel
accelerated and extracts the depth of each pixel considering
both the matching cost and depth map smoothness.

To further speed up the depth extraction, we extend a
common interpolation idea from optical flow [12], [13] into
the depth estimation. The depth values on regular grids with
a step of 4 pixels are solved using the accelerated belief prop-
agation. Then, the depth interpolation is performed to obtain
the full resolution depth map. In the following sections, we
show how these two steps help us extract depth maps.
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Fig. 3. An example to show the “age-map” propagates during the mapping process. The first row is the input images and the second row is the
corresponding “age-maps” with rainbow color coded. Purple means the age is more than 60 frames and red is less than 10 frames. The last row is the
index of images in the sequence. As shown in the figure, objects that last in the camera view have more “ages”. For example, the bushes in the red circle
are seen in the images for about 60 frames, so large-baseline frames from I140 to I200 can be used to compute the matching cost of pixels in the red
circle. On the other hand, the floor tiles in the blue circle only last for 20 frames, so the matching cost is computed with images from I180 to I200. By
maintaining the “age-map”, the baseline of the measurement frames selected for each pixel is adaptive to the visibility of the pixel in the input sequence.

1) Parallelized Belief Propagation: Belief propaga-
tion [14], [15] works by passing messages along four con-
nected image grids carrying smooth information for neighbor
pixels. Messages are vectors of the dimension given by the
number of depth samples Nd. All messages are initialized
as zero vectors and updated iteratively for each pixel. Let
mu→v be the message from pixel u to pixel v, at each time,
it is calculated as

mraw
u→v(du) = C(u, du) +

∑
s∈N (u)\v

(ms→u(du)), (4)

mu→v(dv) = min
du

(V (du, dv) +mraw
u→v(du)), (5)

whereN (u) stands for the 4-neighbors of pixel u. V (du, dv)
is the regularize function controlling the smoothness of the
estimated depth maps. After enough iterations, the final belief
cost bu of pixel u at depth du combining both the matching
cost and the neighbor messages is

bu(du) = C(u, du) +
∑

s∈N (u)

(ms→u(du)). (6)

The depth with the smallest belief cost is assigned to the
pixel as the estimation.

The standard message update [15] uses a forward and
backward scan to compute the message in O(Nd) time. Here
we further reduce the update time to O(log(Nd)). Inspired
by the success of SGM [9], which uses only two parameters
to model the smoothness of the image, we define the function
V (du, dv) as

V (du, dv) =


0 if |lu − lv|= 0

P1 if |lu − lv|= 1

P2 if |lu − lv|≥ 1

, (7)

where lu is the index of du as defined in Equation 2.
Although the regularize function is the same with that in
SGM [9], our method works in a 2D optimization way that
the information of a pixel passes to the whole image along
the image grids instead of some predefined 1D path. Thanks
to the 2D optimization, the extracted depth maps are smooth
and do not have the “streaking” artifacts as in VI-MEAN [8].

With the regularize function defined in Equation 7, the
message can be calculated parallelly using a reduce-min op-
eration on the GPU achieving O(log(Nd)) time. Pseudocode
of updating message mu→v is shown in Algorithm 1.

Algorithm 1 Accelerated Message Update with Nd threads
Require:

each thread’s index i ∈ [0, Nd − 1]
data term C(u, di)
message ms→u(di), s ∈ N (u) \ v

1: compute mraw
u→v(di) using Equation 4

2: mmin(di)← mraw
u→v(di) {reduce-min begins}

3: step← bNd/2c
4: synchronize threads
5: for step > 0 do
6: if i < step and mmin(di + step) < mmin(di) then
7: mmin(di)← mmin(di + step)
8: end if
9: step← bstep/2c

10: synchronize threads
11: end for
12: minraw ← mmin(0) {reduce-min ends}
13: mi ← min(mraw

u→v(di),minraw + P2)
14: if i > 0 then
15: mi ← min(mraw

u→v(di−1) + P1,mi)
16: end if
17: if i < Nd − 1 then
18: mi ← min(mraw

u→v(di+1) + P1,mi)
19: end if
20: mu→v(di)← mi

2) Depth Interpolation: Due to the smoothness of the
depth map, we assume that the depth of an unoptimized pixel
can be represented as a linear combination of surrounding
optimized depths. The depth for an unoptimized pixel p can
be represented using surrounding optimized pixels q as

dp =
1

W

∑
q

Wp,qdq. (8)



And the weight is defined as

Wp,q = exp(−‖p− q‖22 /σ
2
s − ‖Ip − Iq‖

2
2 /σ

2
i ), (9)

depending on the spatial distance and the intensity similarity
between pixel p and pixel q. W =

∑
Wp,q is the normalize

factor. σs controls smoothness of the depth image, and σi
allows discontinuity when the intensity changes.

Although more information can be used to extract the
depth of unoptimized pixels, for example, combining the
cost volume and the prior from surrounding optimized pixels
dp = argmin

d
(
∑
Wp,q(dq − d)2/W + C(p, d)), we found

that a simple combination of the optimized depth is good
enough for further processing and gain much more efficiency.

D. Depth Refinement using Inter-frame Propagated Depth
Filter

Rather than design heuristic filters as in [4] to detect
outliers, we develop the robust depth model proposed in
[16] into a depth filter. The depth filter propagates as the
camera moves and fuses all the sequential extracted depth
(Section IV-C) to estimate refined depth values and inlier
probability. The result of the depth filter is also used to
update the “age-map” which is used for adaptive baseline
matching cost computation in Section IV-B.

Several aspects distinguish our method from [16] and
REMODE [2] which also use the depth filter. First, in our
method, only one depth filter is used to fuse all the extracted
depth maps. During the fusion, the depth estimations are
refined, and outliers are detected. On the other hand, [16]
and REMODE [2] use multiple depth filters bound on se-
lected keyframes to estimate the corresponding depth maps.
Second, our filter is updated using high-quality depth maps
extracted in Section IV-C. However, the other two methods
use the depth estimation from local patch comparison which
is noisy and cannot handle low-texture regions.

1) Depth Filter Model: Similar to [16], we model each
pixel’s depth estimation as a Gaussian distribution plus a
uniform distribution

p(dk|d̂, ρ) = ρN (dk|d̂, τ2k ) + (1− ρ)U(dk|dmin, dmax),
(10)

where d̂ is the ground truth depth, τk and ρ models the
standard variance of inlier estimations and the probabilistic
of outlier estimations, respectively. Given a sequence of
independent observations d1, . . . , dk, the posterior is

p(d̂, ρ|d1, . . . , dk) ∝ p(d̂, ρ)
∏
k

p(dk|d̂, ρ). (11)

[16] shows that the posterior can be approximated by the
product of a Gaussian distribution and a Beta distribution by
matching the first and second moments of d̂ and ρ

p(d̂, ρ|ak, bk, µk, σ
2
k) ≈ N (d̂|µk.σ

2
k)Beta(ρ|ak, bk) (12)

where µk and σ2
k is the estimated depth and the correspond-

ing variance. ak and bk are parameters modeling the inlier

ratio

p(ρ|ak, bk) ≈ ak
ak + bk

(13)

2) Depth Filter Propagation: The depth filter in our
method is propagated from frame to frame estimating the
current depth map. For each input frame {Ik,Tw,k}, the
depth filter corresponding to {Ik−1,Tw,k−1} is first propa-
gated to the current frame.

Depth filter element at pixel u on image Ik−1 with
estimation parameter (µk−1, σ

2
k−1, ak−1, bk−1) is projected

at the new frame:

u′ = π(T−1w,kTw,k−1π
−1(u, µk−1))

µ′ =
∥∥∥T−1w,kTw,k−1π

−1(u, µk−1)
∥∥∥
2

σ′2 = σ2
k−1 + σ2

prop

a′ = ak−1

b′ = bk−1

, (14)

where u′ is the new position on Ik. µ′, σ′2 are the predicted
depth and variance for pixel u′ and σ2

prop comes from the
prediction uncertainty of the depth filter propagation.

During the depth filter propagation, collision is handled
that if more than one filter elements are projected to one
pixel, only the element with the minimum predicted depth
value µ′ are kept, and others are removed as occlusion. After
the propagation, elements are dilated one pixel to fill the
holes caused by the forward-warping.

3) Depth Filter Update: After the filter propagation, the
depth prediction is aligned with the current input frame.
The extracted depth of the current frame using the method
discussed in Section IV-C is fused with the corresponding
depth prediction. For a pixel u with extracted depth du
that do not have a depth prediction, a new filter element
is initialized using normal distribution with mean du and
variance σ2

init times the Beta distribution with parameters
ainit and binit as Equation 12. If the correspondent depth
filter exists, the depth filter is updated by matching the first
and second moments in a close form [16].

Outlier elements are unavoidable in dense mapping sys-
tems that they will be projected into wrong positions and
fused with other pixels. The estimated inlier ratio is used to
handle inlier and outlier elements in the depth filter. Depth
element with estimated inlier ratio p(ρ) > ρinlier are output
as the depth estimation for this pixel. The depth values from
elements with p(ρ) < ρinlier are considered as unreliable
estimations and are masked in the depth maps. Elements
with inlier ratio p(ρ) < ρoutlier are deleted as outliers and
will be reinitialized in the fusion of next frame. Because of
the outlier robust model used in our system, the depth map
is robust to temporary outliers. As shown in Fig. 4, some
outliers in the extracted depth are corrected and others are
masked by the proposed depth refinement.
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Fig. 4. Example to show refining a depth map using the probabilistic depth
filter. The left image is the current input frame of the system. The middle
is the extracted depth (Section IV-C). The right image is the result after the
depth filter. Depth maps are color coded as Fig.1. The depth filter is robust
to temporary outliers (purple and red estimation in the extracted depth) and
gives out a better final depth map with outliers masked.

4) “Age-Map” Propagate and Update: The “age-map”
tracks pixels from frame to frame enabling our method
to exploit large-baseline observations during the adaptive
baseline matching cost computation without sacrificing the
image overlaps. The “age” of each pixel is initialized as
zero. For every input image, the “age” of pixel u on Ik−1 is
propagated to u′ on Ik using Equation 14 and increased by
one. During the update of the depth filter, an outlier element
deletion reset the corresponding pixel age to zero. Due to the
memory limitation in GPU, the latest 60 frames are stored
in our system and each pixel has the maximum “age” of 60.

V. IMPLEMENTATION DETAILS

Our monocular depth reconstruction is fully parallelized
using CUDA2. The efficiency makes the dense mapping run
in real-time. Our method is also applied to fisheye cameras
estimating the depth maps for highly distorted images.

A. Matching Cost Computation

To avoid potential numerical issues, input images are
scaled between 0 and 1 before any calculation. Nd = 64
depth values are used to compute the matching cost and
dmin = 0.5, dmax = 50.0 are used to determine the range of
the depth values in Section IV-B. For fisheye cameras, the
polynomial camera model [17] is used for projection and
back-projection function.

B. Depth Extraction

In Section IV-C, P1 = 0.2 and P2 = 2.0 is used to
control the smoothness of the depth maps. During the depth
interpolation, each pixel is a combination of 25 optimized
neighbor depths, with spatial weight σs = 1.0 and intensity
weight σi = 0.5.

C. Depth Refinement

In Section IV-D, elements in the depth filter are initialized
using σ2

init = d2max, ainit = 10, and binit = 10. We
assume each pixel with the extracted depth d using the
method discussed in Section IV-C has standard deviation
sigma = 0.1×d when updating the filter element. During the
propagation, σprop = 0.05 is used for prediction uncertainty.
Inlier, outlier ratio threshold is set ρinlier = 0.6, ρoutlier =
0.4.

2www.nvidia.com

VI. EXPERIMENTS

We first compare our pinhole implementation with two
state-of-the-art open source works REMODE [2] and VI-
MEAN [8]. The mapping part of VI-MEAN [8] is separated
experiments according to their further work [18]. All three
methods need the distance prior of the environment. We set
dmax = 50.0 and dmin = 0.5 all the methods. Parame-
ters stay the same throughout the experiments. Only valid
depth estimations are measured in the experiments. Both
our method and VI-MEAN [8] have invalid detection. For
REMODE [2], diverged estimations are masked as invalid
points for a fair comparison.

A. Quality Evaluation

The TUM dataset [5] contains real-world RGB-D data and
ground-truth camera poses for visual SLAM systems. The
RGB-D data was recorded at 30 Hz with a resolution of
640× 480. The camera pose was recorded at 100 Hz using
a high-accuracy motion-capture. Here we select 6 sequences
suitable for monocular mapping: freiburg3 nostructure tex-
ture far, freiburg3 long office household, freiburg3 sitting
halfsphere, freiburg3 structure texture far, freiburg3 structure
notexture far, and freiburg3 sitting xyz. Unlike synthetic
datasets, the TUM dataset contains a variety of environments
and movement patterns. All the methods are running on a
Nvidia Jetson TX2 which is a portable device widely used
in robotic applications. The TX2 is integrated with a 256-
core GPU, a hex-core CPU, and 8 GB memory.

Three standard measures are used to evaluate the quality
of each method. We define the relative error (RE) of a depth
estimation as

RE(du) =
|du − dgtu |

dgtu
, (15)

where dgtu is the ground truth corresponding to estimation
du. The first measure we use is mean relative error (MRE),
which is the mean of all the relative errors of the valid
estimations. The second measure is density, which is the
density of valid estimation in the depth map. The first
and second measures represent the quality and density of
the depth maps. Lastly, we use RE-density to measure the
relative error distribution of the estimations generated by
each method. RE-density(e) is defined as the percentage
of valid estimations whose relative errors are within e.

In addition, we also evaluate the importance of the pro-
posed matching cost computation and the depth refinement
in our system. To evaluate the benefit of utilizing multi-
baseline observations in the sequential input, we measure
the performance of our method without the help of adaptive
baseline matching cost computation in No-adaptive. In No-
adaptive, for all the pixels in Ik, Ik−3 is selected as the
measurement frame for a balance between image overlap
and baseline length. The depth refinement is evaluated in
No-refinement, that the extracted full dense depth maps are
evaluated directly without the depth filter fusion.



TABLE I
TUM DATASET [5] RESULT

density(%) MRE(%)
dataset REMODE VI-MEAN OURS No-adaptive REMODE VI-MEAN OURS No-adaptive No-refinement

nostructure texture far 49.46 73.92 64.24 41.85 93.19 97.27 13.49 14.53 292.98
long office household 41.47 83.10 77.86 69.57 73.50 58.25 15.67 17.28 160.05

sitting halfsphere 27.69 75.81 53.33 41.80 26.37 64.42 23.10 28.45 184.47
structure texture far 50.30 90.55 86.67 71.14 19.74 39.52 12.01 18.46 37.28

structure notexture far 37.06 84.49 84.13 58.70 38.44 69.87 20.68 24.23 192.79
sitting xyz 30.96 75.72 59.47 31.46 28.55 59.13 24.94 27.92 175.63

nostructure texture far long office household sitting halfsphere structure texture far structure notexture far sitting xyz

Fig. 5. Relative Error Map of our method in six scenarios from the TUM dataset. The first row is a snap of correspondent sequence. The following
row is the error map of the depth image. Error maps are color coded in the Jet colormap: cold colors mean small error while warm colors mean large
error. Black indicates outlier pixels masked by the depth filter. Note that our method generates smooth depth maps without the “streaking” artifacts and
can handle textureless region well (for example, in structure notexture far). The probabilistic filter can detect outliers (e.g. caused by moving objects as in
sequence sitting xyz) and keep inlier depth estimations.

Fig. 6. RE-density of the three methods in six TUM dataset sequences.
The estimation in our method is much more precise.

The results are shown in Table I, Fig. 5, Fig. 6, and Fig. 7
Our method outperforms the compared methods in MRE by
a large margin in all the six sequences. The density of the
estimated depth map is higher than that of REMODE [2] and
close to that of VI-MEAN [8] in many of the sequences.
Fig. 5 show that our method can deal with textureless
regions and detect outlier estimations effectively. In Fig. 7,
the error distributions of No-refinement and No-adaptive
are compared with that of our method which utilizes the
sequential information in both the input images and extracted
depth maps. As shown in Table I and Fig. 7, the depth
estimation is more dense and accurate when multi-baseline
information in the input sequence is used. By fusing all
the sequential depth maps, the outliers in No-refinement are
removed and the overall accuracy is improved dramatically.

Fig. 7. RE-density to evaluate the importance of the proposed adaptive
baseline matching cost computation and the propagated depth filter-based
depth refinement.

B. Efficiency Evaluation

The efficiency of each method is measured by the time to
process one input image. Multi-resolution is used to evaluate
the efficiency on different scales. As shown in Table II,
our method achieves real-time performance on TX2 with
the resolution of 512 × 384. Compared with REMODE [2]
and VI-MEAN [8] which only estimate depth for some
keyframes, our method generates depth estimation for every
input frame in the processing time. The low-latency depth
estimation makes our system suitable for robotic applications
where fast perception is required for safety.

C. Onboard and Live Experiment

We test our method using pinhole and fisheye cameras in a
lab environment on a UAV. Images are processed onboard in
376 × 240. camera poses are estimated using visual-inertial



TABLE II
RUN-TIME PER FRAME(MS) (FPS) ON TX2

640× 480 512× 384 320× 240
REMODE [2] 53.0(18.9) 22.0(45) 11.6(86.2)
VI-MEAN [8] 209.5(4.8) 93.8(10.7) 52.1(19.2)

OURS 127.6(7.8) 80.2(12.5) 33.4(29.9)

system (VINS) [11] at 10 Hz. All the parameters stay the
same as in previous experiments. In fisheye mapping, we
use a 180-degree field of view fisheye camera. Results are
shown in Fig. 1. Our method generates nearly outlier free
depth images by fusing the sequential information. Note that
in the fisheye test, the ceiling is reconstructed right even it
is highly distorted in the image and depth discontinuity is
preserved between the screen and background.

More outdoor mapping experiments are tested using im-
ages with the resolution of 752 × 480. Both pinhole and
fisheye cameras are used. As shown in Fig. 8, our method
generates dense and smooth depth maps capturing fine struc-
tures (for example, trees, and poles) in the environments.
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Fig. 8. We test the method in outdoor environments using pinhole and
fisheye cameras. Depth maps are color coded the same as Fig. 1. As the
results show, our method can capture fine structure as poles and trees. The
depth maps generated are smooth and dense.

VII. CONCLUSION

We present a monocular dense mapping system that esti-
mates high-quality dense depth maps in real-time for both
pinhole and fisheye cameras. Two core contributions are
proposed that significantly improve the performance of the
system by utilizing the sequential information. The adaptive
baseline matching cost computation is proposed to utilize the

multi-baseline observations in the input sequence resulting
in robust and accurate depth estimations. The propagated
depth filter-based depth refinement is developed to refine all
the sequential estimated depth maps and detect outliers. The
public dataset, UAV mapping, and handhold experiments are
used to demonstrate the performance of our method.
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