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Abstract— In this paper, we propose a novel mapping method
for robotic navigation. High-quality dense depth maps are
estimated and fused into 3D reconstructions in real-time using
a single localized moving camera. The quadtree structure of
the intensity image is used to reduce the computation burden
by estimating the depth map in multiple resolutions. Both
the quadtree-based pixel selection and the dynamic belief
propagation are proposed to speed up the mapping process:
pixels are selected and optimized with the computation resource
according to their levels in the quadtree. Solved depth estima-
tions are further interpolated and fused temporally into full
resolution depth maps and fused into dense 3D maps using
truncated signed distance function (TSDF). We compare our
method with other state-of-the-art methods using the public
datasets. Onboard UAV autonomous flight is also used to further
prove the usability and efficiency of our method on portable
devices. For the benefit of the community, the implementation
is also released as open source at https://github.com/
HKUST-Aerial-Robotics/open_quadtree_mapping.

I. INTRODUCTION

Cameras are widely used in robotic systems for they pro-
vide informative data about the environment while maintain-
ing low power consumption and producing small footprints.
Specifically, we are interested in Monocular Visual Inertial
Systems [1] [2] because they can provide robots with the
necessary information for navigation using the minimum
sensor set of a single camera and an inertial measurement
unit (IMU). However, the sparse or semi-dense maps built
for localization are not sufficient for missions like obsta-
cle avoidance. To perceive the surrounding environment,
additional sensors like RGB-D cameras, Lidars or stereo
cameras are usually used. However, the weight, size and
power consumption of these sensors make them unsuitable
for robots whose payload and power are limited. In this
paper, we propose a monocular dense mapping method that
can estimate high-quality depth maps and build dense 3D
models in real-time using a single localized moving camera
with no extra sensors as shown in Fig. 1.

Generating high-quality dense depth maps is the key step
in the monocular dense mapping system. To be applied
in robotic applications, the depth map estimation must be
efficient in time and densely cover the image including low-
texture regions. Our method is inspired by two observations
in monocular depth estimation:

(1) Global optimizations [5], [6] are often required to
estimate the depth of low-texture regions and smooth the
depth map by minimizing one energy function considering
both the patch matching cost and the depth map smoothness.
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Fig. 1. Our method can generate dense 3D maps in real-time using a single
localized moving camera obtained through a monocular visual-inertial state
estimation [3]. The left column is a snap of the environment and the right
column is the 3D map built in real-time. Red lines in the 3D maps represent
the trajectory of the camera. A variety of outdoor and indoor environments
are tested. Outdoor environments consist of repeated patterns in (a) and fine
structures like trees in (b). Indoor environments consist of repeated patterns
on the ground and textureless region like the floor in (c). More experiments
are available in the supplementary video.

However, the expensive computation prevents them from
being widely used in real-time applications. (2) Pixels that
are within the same quadtree block of the intensity image
share similar intensities and depth values. Quadtree structures
are widely used (e.g., in image coding [7]) that pixels
are organized in a tree structure according to their local
texture: pixels with similar intensity values can be grouped
together by assigning them to the same quadtree block and
represented in the corresponding resolution. As illustrated in
Fig. 2, in most of the cases, the quadtree level of a pixel in
the intensity image is equal or finer than that in the depth
image. This means that pixels which share the same quadtree
block in the intensity image also belong to the same block
in the depth image, and thus share similar depth values, but
not vice versa. In other words, the depth of a pixel can be
represented in the resolution corresponding to its quadtree
level in the intensity image.

Inspired by these two observations, we propose a novel
monocular dense mapping method that estimates dense depth
maps and build 3D reconstructions using a single localized
moving camera. Depth density and accuracy are improved by
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Fig. 2. One image and the corresponding depth map from Middlebury
Stereo Datasets [4] are divided into quadtree structures according to intensity
and depth values. In most of the cases, pixels that share the same quadtree
block in the intensity image also belongs to the same block in the depth
map, but not vice versa. This means that pixels that are within the same
quadtree block of the intensity image share similar intensity values and
depth values.
global optimization and the computation burden is reduced
by estimating the depth map in multiple resolutions corre-
sponding to the quadtree structure of the intensity image. In
specific, pixels are selected according to their quadtree levels
with density proportional to the resolution they need to be
estimated. Dynamic belief propagation is used to estimate the
depth of selected pixels in a coarse-to-fine manner, where
the depth is extracted at corresponding resolutions to gain
efficiency. All the depth estimations are interpolated into a
full dense depth map and fused temporally with former depth
maps. Lastly, the depth maps are fused into a high-quality
global 3D map.

We compare our work with other state-of-the-art monoc-
ular dense mapping methods using the public datasets.
Onboard autonomous flights in different environments are
also used to prove the usability of our method in UAV
applications.

The contributions of our method are the following:
• A novel pixel selecting method that selects pixels to

estimate the depth according to their levels in the
quadtree structure of the image. The selected pixels
spread across the whole image and draw more attention
to high-texture regions.

• A dynamic belief propagation that estimates the depth
of selected pixels in a coarse-to-fine manner. Pixels are
optimized with the computation resource according to
their quadtree levels. The optimization generates high-
quality depth estimation while maintaining efficiency by
skipping coarse resolution pixels.

• A monocular dense reconstruction system which gener-
ates high-quality dense depth maps in real-time using
only a localized moving camera. As demonstrated in
the experiments and the supplementary video, the depth
maps can be directly fused into 3D maps for 3D
reconstruction and UAV autonomous flight. The system
is also released as open source for the community.

II. RELATED WORK
Many methods have been proposed to solve the monocular

dense mapping problem.
In computer vision, the problem of reconstructing the

environment using images is also known as Structure from

Motion (SfM). Given a sequence of images, SfM reconstructs
the structure of the environment and estimates camera mo-
tions. Although achieving impressive results, the result is
usually sparse and need to be processed offline. On the other
hand, our method uses images and corresponding camera
motions to densely reconstruct the environment in real-time.

DTAM [8], VI-MEAN [9] and REMODE [10] are methods
that solves the dense mapping problem using global or
semi-global information. DTAM [8] builds cost volumes by
accumulating multiple frames and extracts depth maps using
a total variation optimization. VI-MEAN [9] uses a semi-
global match [11] (SGM) to regularize the cost volume.
However, the 4-path optimization causes the “streaking”
artifacts in the estimated depth maps of VI-MEAN [9]. RE-
MODE [10] uses a total variation to smooth the depth images
estimated by a probabilistic update. Since the optimization
does not search the depth in the cost volume like DTAM [8],
REMODE [10] cannot handle low-texture regions well.

MonoFusion [12], MobileFusion [13] and 3D Modeling
on the Go [14] build dense maps from two-view stereo
matching. Every input image is compared with a selected
measurement frame. Although two-view matching is fast,
these methods contain many outliers in monocular cases.
Post-processing techniques, such as Left-Right consistency
check, large cost remove, consistency over time, are used to
deal with the problem.

Multi-level mapping [15] is the method that is most similar
to our work. In Multi-level mapping [15], quadtree structure
is used to increase the local texture of patches so that more
pixels can be estimated using local information. A total
variation optimization is then carried out to smooth the
depth map from multi-resolution. The method is efficient
and increases the density of the depth maps. The most
important difference between Multi-level mapping [15] and
our method is the density of estimated depth maps. Using
global optimization, our method can recover the depth of
regions with low texture, even no texture. On the other hand,
Multi-level mapping [15] estimates the depth of pixels using
local intensity information. Thus, only the depth of pixels
that have enough gradient can be estimated. The density of
the estimated depth maps is important to the safety of robotic
applications and the completeness of the 3D reconstruction.

III. SYSTEM OVERVIEW

Inspired by the relationship between the quadtree struc-
tures of the image and the corresponding depth map, our
method solves the depth estimation in multi-resolution and
fuse them into high-quality full-resolution depth maps and
dense meshes.

Our method consists of five steps: (1) quadtree based pixel
selection, (2) matching cost vector calculation, (3) dynamic
belief propagation, (4) depth interpolation and temporal fu-
sion, and (5) TSDF fusion. The pipeline and the intermediate
results of the system are shown in Fig. 3. Input images
are first transformed into a 3-level quadtree structure and
each pixel will be assigned to a quadtree level. Pixels are
selected across the image based on their quadtree levels and



(a) Input image (b) Quadtree of the image (Section IV-B) (c) Depth extraction (Section IV-D)

(e) Fused dense 3D meshes (Section IV-F) (f) Zoomed in details of extracted depth (c)

(d) Depth interpolation (Section IV-E)

Fig. 3. Intermediate results of our method to generate dense depth maps and meshes. Depth values in (c) and (d) are rainbow color-coded with red
representing 0.5m and purple representing more than 10.0m. Our method first selects and estimates the depth of pixels according to the quadtree structure
of the image and then fuses them into high-quality full-resolution depth maps and meshes. Extracted depth in (c) contains depth from dynamic belief
propagation of Section IV-D and depth estimations from high-gradient estimation of Section IV-E. Note that the extracted depth in (c) spreads across the
whole image including low-texture areas and captures texture and depth discontinuity regions well which is essential for further fusion.

the matching cost vector is computed for global optimization.
Dynamic belief propagation extracts the depth estimation for
each selected pixel in the corresponding resolution. Finally,
the depth estimations are interpolated and fused temporally
into full-resolution depth maps and are used to build global
3D maps.

IV. MONOCULAR DENSE RECONSTRUCTION

A. Notation

Let Tw,k ∈ SE(3) be the pose of the camera with respect
to the world frame w when taking the k-th image. We denote
the k-th intensity image as Ik : Ω ⊂ R2 7→ R. A 3D
point xc = (x, y, z)T in the camera frame can be projected
into the image as a pixel u := (u, v)T ∈ Ω using the
camera projection function: π(xc) = u. A pixel can be back-
projected into the camera frame c as a point: xc = π−1(u, d)
where d is the depth of the pixel.

In the following sections, the pose Tw,k is given by the
monocular visual-inertial system or given by the datasets.
We assume that the camera pose is accurate and fixed for
each frame that will not change in the future which is the
case for typical visual odometry systems. Reconstructing the
environment with loop closure is beyond the scope of this
paper.

The input of our system is a sequence of images Ii and
their corresponding poses Tw,i. For each input image Ik, the
depth map is estimated using Ik as the reference frame and
multiple former input images as measurement frames.

B. Quadtree Based Pixel Selection
We use the quadtree to find the most suitable resolution

representation for each pixel. For each input image Ik,
we compute a 3-level quadtree structure with the finest

level corresponding to 4 × 4 pixel block and the coarsest
level corresponding to 16 × 16 pixel block. As illustrated
in Fig. 2, pixels in the same block of the quadtree share
similar intensities and depth values thus can be estimated
together. The first pixel in the quadtree block is selected to
construct the matching cost vector and estimate the depth
using dynamic belief propagation. Fig. 4 shows an example
of selecting pixels based on the quadtree structure of the
image.

Quadtree-selected pixels

Fig. 4. An example to show selected pixels based on the extracted quadtree
of Fig. 3(b), red points are selected pixels to estimate the depth. The selected
pixels cover the whole image in different densities according to the quadtree
structure of the image.

For pixels that are not selected in this step, their depth
estimation will be obtained by interpolation and fusion in
Section IV-E. Selecting pixels according to the quadtree
structure of the intensity image enables us to solve the depth
maps in good efficiency without sacrificing much of the
precision.

C. Matching Cost Vector Calculation

The matching cost vectors of quadtree-selected pixels are
calculated for the use in dynamic belief propagation. Our
method selects five previous nearby frames as measurement
frames. In this work, we sample Nd depth values uniformly
distributed on the inverse depth space. The sampled depth d



and the corresponding depth index l has the relationship:
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where l ∈ [0, Nd − 1], l ∈ N. dmax and dmin are the
maximum and the minimum sampled distance.

For each quadtree-selected pixel uk in image Ik, the cost
of depth d is defined as

C(uk, d) =
1

|M|
∑

Im∈M
SAD(Im, Ik,uk, d), (2)

where M is the set of selected measurement frames. For
each measurement frame Im and depth d, the corresponding
pixel of uk in the measurement frame Im is given by
um = π(T−1w,mTw,kπ

−1(uk, d)). SAD(Im, Ik,uk, d) sim-
ply calculates the sum of absolute difference of two 3 × 3
patches located at um and uk in image Im and Ik.

D. Dynamic Belief Propagation

A dynamic belief propagation is proposed to estimate
the depth of quadtree-selected pixels distributed across the
image. Belief propagation works by passing messages along
connected image grids to regularize the estimated depth
maps. Messages are Nd dimensions vectors representing
the belief of the depth distribution from one pixel to its
neighbor. Every pixel in the image grid passes and receives
four messages to and from its 4-neighbor. Combining the
matching cost vector and the messages, the final belief vector
Buk

(d) for pixel uk in image Ik is given as

Buk
(d) = C(uk, d) +

∑
s∈N (uk)

(ms→uk
(d)), (3)

where N (uk) is the 4-neighbor of pixel uk and ms→uk

is the message passing from pixel s to uk. The depth that
minimizes the belief vector is selected as the estimation of
the pixel.

The core part of belief propagation is to iteratively update
the messages. All the messages are initialized as zero vectors
and updated in parallel as

mraw
p→q(dp) = C(p, dp) +

∑
s∈N (p)\q

ms→p(dp), (4)

mp→q(dq) = min
dp

(V (dq, dp) +mraw
p→q(dp)), (5)

where V (dq, dp) regularizes the depth map by punishing the
differece between dq and dp.

The dynamic belief propagation is sped up in two ways.
Firstly, the message update time is reduced to O(log(Nd))
by simplifying the regularize function V (dq, dp) and using
parallel acceleration. Secondly, the update iterations are
reduced by extracting the depth estimation at multi-resolution
according to the quadtree levels of the selected pixels.

The time complexity of Equation 5 is O(N2
d ) and Felzen-

szwalb et al. [6] reduces it to O(Nd) by a forward and back-
ward scan. We further reduce the message update time using

parallel acceleration by parallel acceleration and adopting the
regularization function from SGM [11]:

V (dp, dq) =


0 if |l(dp)− l(dq)|= 0

P1 if |l(dp)− l(dq)|= 1

P2 if |l(dp)− l(dq)|≥ 1

, (6)

where l(dp) is the depth index of dp as defined in Equation 1,
P1 and P2 controls the smoothness of the depth maps as
that in SGM. Note that although the Equation 6 is the same
to that in SGM [11], the message updating and passing is
different. SGM aggregates the cost along several predefined
1D paths, while our method passes the messages on 2D
image grid. 2D global optimization enables our method to
generate smooth depth map without the “streaking” artifacts
in SGM. Updating the message from pixel p to pixel q can
be accelerated to O(log(Nd)) time with the help of parallel
reduce operation. Algorithm 1 shows the way to update
the messages of a pixel in O(log(Nd)) time. Messages are
updated in parallel using Algorithm 1.

Algorithm 1 Message Update for pixel p with Nd threads
Require:

data term C(p, di)
message ms→p(di), s ∈ N (p) \ q
each thread’s index i ∈ [0, Nd − 1]

1: compute mraw
p→q(di) as Equation 4

2: mmin(di)← mraw
p→q(di)

3: step← bNd/2c
4: synchronize threads
5: for step > 0 do
6: if i < step and mmin(di + step) < mmin(di) then
7: mmin(di)← mmin(di + step)
8: end if
9: step← bstep/2c

10: synchronize threads
11: end for
12: minraw ← mmin(0)
13: mi ← min(mraw

p→q(di),minraw + P2)
14: if i > 0 then
15: mi ← min(mraw

p→q(di−1) + P1,mi)
16: end if
17: if i < Nd − 1 then
18: mi ← min(mraw

p→q(di+1) + P1,mi)
19: end if
20: mp→q(di)← mi

To speed up the convergence and to extract the depth in
corresponding resolutions, the messages are updated in a
coarse-to-fine manner. Different from standard belief prop-
agation [6] which works on 2D cost volume with a regular
shape, the proposed dynamic belief propagation works on
the cost volume built from quadtree-selected pixels. The
cost volume is valid only on quadtree-selected pixels and
equals to the matching cost vector computed in Section IV-
C. For other pixels that are not quadtree-selected, the cost
volume is zero vector. The cost volume is downsampled
as traditional methods [6] but averaged according to the



number of quadtree-selected pixels. Although the coarse-
to-fine manner speeds up the convergence of messages, the
computation at fine levels of the image is still heavy for real-
time applications. Since the depth of a pixel can be repre-
sented in the corresponding resolution as illustrated in Fig. 2,
the depth estimation can be extracted after the optimization
of the corresponding level is over. The messages of extracted
pixels are passed into finer levels as [6]. However, these
messages are not updated anymore but only used to infer the
depth of other pixels. The whole process of dynamic belief
propagation that extracts the depth estimation of quadtree-
selected pixels in one optimization is shown in Fig. 5.

(b) Dynamic belief propagation at each level

(c) Extracted depth at each level

(a) Sampled pixels

(d) Extracted depth

Level 2 Level 1 Level 0

Fig. 5. Illustration of dynamic belief propagation that estimates the depth
of quadtree-selected pixels. In (a), the image is converted into quadtree
structure, quadtree-selected pixels are marked in red while the others are
in white. Belief propagation works by updating messages between the
image grid. As shown in (b), only messages (links colored in blue) of the
corresponding or finer quadtree levels are updated using Algorithm 1 in
parallel. Messages from coarse pixels (links colored in black) are terminated
optimization. The depth estimations of quadtree-selected pixels are extracted
at the corresponding levels of the optimization shown in (c) and combined
as the output of dynamic belief propagation shown in (d).

E. Depth Interpolation and Temporal Fusion

Although the depth estimations of quadtree-selected pixels
spread across the image, it is not full dense depth estimation.
In this section, we first interpolate the estimations into full
dense depth maps and then fuse them temporally with former
results in a probabilistic way.

1) Depth Interpolation: During the interpolation, to fur-
ther utilize the pixels that contain high-gradient texture but
not quadtree-sampled, we estimate the depth of these pixels
using the approach similar to Eigen et al. [16]. The high-
gradient estimation is fully parallelized on GPU and takes
about 2ms to update one frame.

The depth estimation from dynamic belief propagation and
from high-gradient estimation are combined and interpolated
spatially into full resolution depth map Dk corresponding to
the incoming frame Ik. The depth estimated by the dynamic
belief propagation and high-gradient estimation covers the
whole image and draw more attention to texture-rich regions.
Interpolating estimations to get full dense results is a com-
mon method to solve optical flow [17]. Here, we extract full
dense depth maps by minimizing a least-square cost.

The cost of the interpolated full dense depth map Dk is

defined as

E =
∑
p∈Dk

(hp(d′p− dp)2 + λ
∑

q∈N (p)

wp,q(d′p− d′q)2), (7)

where d′p is the fused depth value of pixel p, dp is its corre-
sponding depth estimation using belief propagation or high-
gradient estimation if it exists. hp is an index function, is 1 if
dp exists and is 0 otherwise. wp,q = exp(−(∆I2p,q/σ

2
up) is

the weight for depth difference based on intensity difference
∆Ip,q of pixel p and q on image Ik. λ and σ2

up control
the smoothness of the interpolated depth map. Minimizing
the cost E is computationally expensive. Here, we adopt the
method from Min et al. [18] that approximates the problem in
two 1D interpolate problems. Interpolating the depth in one
dimension can be solved efficiently by Gaussian elimination.
We first interpolate the depth in the row direction and then
in the column direction.

2) Temporal Fusion: Full dense depth maps are further
fused with former estimations in a probabilistic way to
reject outlier estimations. The estimation of each pixel is
modeled using an outlier robust model proposed by Vogiatzis
et al. [19],

p(d̂, ρ|ak, bk, µk, σ
2
k) ≈ N (d̂|µk.σ

2
k)Beta(ρ|ak, bk), (8)

where d̂ is the ground truth depth, ρ is the inlier probability
of the estimation. µk, σ2

k are estimated depth and the
corresponding variance, respectively, from frame Ik. ak and
bk are the parameters modeling the inlier probability

p(ρ|ak, bk) ≈ ak
ak + bk

(9)

Different from REMODE [10] and Vogiatzis et al. [19] which
estimate the depth maps of frames using the probabilistic
model independent from each other, we maintain one prob-
abilistic map throughout the runtime to fuse the sequential
estimations. For every input image Ik, the probabilistic depth
map of Ik−1 is warped and fused with the extracted dense
depth map. Depth estimations with inlier probability p(ρ) >
ρinlier are output as the result, while p(ρ) < ρoutlier are
deleted as outliers.

F. Truncated Signed Distance Function (TSDF) Fusion

Filtered depth is fused into a global map using the method
proposed by Klingensmith et al. [20]. Since our depth
estimation contains very few outliers thanks to the dynamic
belief propagation, interpolation, and temporal depth fusion,
we fuse the output directly without any extra filters.

V. IMPLEMENTATION DETAILS

Our method is fully parallelized with GPU acceleration.
The efficiency makes the 3D reconstruction run in real-time
even for portable devices, for example, the Nvidia Jetson
TX1. The values of parameters listed below are found empiri-
cally and we find that they work well in all experiments. This
can be explained that depth maps are estimated using global
optimization which is robust to different image contents.



A. Quadtree-based Depth Estimation

The input image intensity is scaled between 0 and 1 to
avoid potential numerical issues. During the calculation of
the matching cost vector in Section IV-C, Nd = 64 depth
values are calculated with dmin = 0.5m and dmax = 50.0m.
In Section IV-D, P1 and P2 are set to 0.003 and 0.01,
respectively, to balance the smoothness and discontinuity of
the estimated depth maps.

B. Depth interpolation and Temporal Fusion

Full dense depth maps are obtained using the least-square
method. λ is set to 10 and σup is set to 0.07 in Section IV-E.1
so that interpolated depth maps are smooth, and discontinuity
is preserved. In Section IV-E.2, the full dense depth maps are
fused temporally with former dense maps in a probabilistic
model initialized using a = 10 and b = 10. ρinlier = 0.5
and ρoutlier = 0.45 are used during the fusion for fast
convergence and outlier rejection.

VI. EXPERIMENTS

We first show the depth estimation ability using the
quadtree-selecting and the dynamic belief propagation which
are two main contributions of our method on Middlebury
Stereo Datasets [4]. Then, our system is compared with
other open-source dense mapping methods: REMODE [10]
and VI-MEAN [9] on public datasets including the TUM
Dataset [21] and the ICL-NUIM Dataset [22]. The mapping
part of VI-MEAN [9] is extracted following their successor
work [23]. In the following sections, only the mapping
part of VI-MEAN [9] is evaluated using provided camera
poses. Since Multi-level mapping [15] is not open-source,
our method is compared with the results reported in their
paper to demonstrate the performance of depth estimation
using global optimization. Finally, our system is tested using
onboard UAV navigation experiments in complex environ-
ments to prove the usability and real-time performance.

A. Depth Estimation on Middlebury Stereo Dataset

Here, we show that our method can estimate disparity
maps in high efficiency without losing much accuracy.
We compare our method with the standard multi-level be-
lief propagation [6] (BP) using 2003 Middlebury Stereo
Dataset [4]. A quadtree of four levels is built to guide the
quadtree-selecting and the dynamic belief propagation. The
matching cost vector is calculated using SAD of 3 × 3
image patches. All the parameters are the same for both
methods with regularize terms P1 = 0.5, P2 = 4.0
and 4-level optimization with iterations of (10, 5, 5, 2) from
coarse to fine. Two outputs of our method are evaluated: (1)
depth estimation of quadtree-selected pixels using dynamic
belief propagation of Section IV-D, (2) interpolated depth of
quadtree-selected pixels using Section IV-E. We denote these
outputs as Quadtree-pixels and Quadtree-fused, respectively.
The extracted depth and error map are shown in Fig. 6.
Table I shows the evaluation results where the “error” is
the average absolute error of estimated disparities and the
“messages” is the number of updated messages during the

Standard-bp Quadtree-pixels Quadtree-fusedDataset
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Fig. 6. Comparison between standard belief propagation and our method.
Left column: images and ground truth depth maps from the dataset. For each
output, the estimated depth and the corresponding error map are shown in
top and bottom. The error map is coded in the Jet color map: blue means
small errors and red means large errors. Note that the results of Quadtree-
pixels are dilated for visualization. Evaluation results are shown in Table I.

optimization which consumes most of the computation time.
As shown in the results, by estimating the disparity maps
according to the quadtree structure of the reference image,
our method generates very competitive results using less
than half the computation of standard belief propagation.
The result of Quadtree-fused on Teddy is even better than
standard method in accuracy because of its subpixel results.

TABLE I
EVALUATION OF STANDARD-BP AND OUR METHOD

Standard-BP Quadtree-pixels Quadtree-filtered
Teddy error 3.41 3.07 3.36

messages 613K 283K 283K
Cones error 3.28 2.64 3.29

messages 613K 229K 229K

B. Comparison with State-of-the-art Methods

The TUM dataset [21] is designed to evaluate visual
SLAM and RGB-D SLAM systems containing RGB-D im-
ages and camera poses captured by a high-accuracy motion-
capture system. We select 6 sequences from the dataset
suitable for monocular mapping: nostructure texture far,
long office household, sitting halfsphere, structure texture
far, structure notexture far and sitting xyz. The selected
sequences contain a variety of environments from structure
to no-structure, and from texture-rich to low-texture regions.
The ICL-NUIM dataset [22] is generated synthetically with
perfect ground truth poses and RGB-D data. Here, we use
all the sequences in the living room scene.

All the parameters stay unchanged throughout the evalu-
ation, and we set dmin = 0.5 and dmax = 50 for all the
three methods. Other parameters are set to default values for
VI-MEAN [9] and REMODE [10].

1) Quality Evaluation: Since both our method and VI-
MEAN [9] have outlier detection, we treat diverged estima-
tion reported by REMODE [10] as outliers and the others
as valid estimations. Two standard measures are used to
represent the quality of the method: density and relative error.
The density of the depth map is measured by the percentage
of the valid estimation to the whole image pixel number.



TABLE II
TUM DATASET AND ICL-NUIM DATASET RESULT

nostructure texture far long office household sitting halfsphere structure texture far structure notexture far
density(%) error(%) density(%) error(%) density(%) error(%) density(%) error(%) density(%) error(%)

REMODE [10] 49.46 93.19 41.47 73.50 27.69 26.37 50.30 19.74 37.06 38.44
VI-MEAN [9] 73.92 97.27 83.10 58.25 75.81 64.42 90.55 39.52 84.49 69.87

OURS 45.81 4.79 61.38 7.97 30.62 13.00 67.14 5.12 52.16 10.23
sitting xyz ICL-NUIM kt0 ICL-NUIM kt1 ICL-NUIM kt2 ICL-NUIM kt3

density(%) error(%) density(%) error(%) density(%) error(%) density(%) error(%) density(%) error(%)
REMODE [10] 30.96 28.55 21.16 23.42 No Output No Output 38.48 32.86 34.52 75.12
VI-MEAN [9] 75.72 59.13 90.32 35.89 77.56 76.96 89.51 52.08 82.88 91.54

OURS 33.79 10.94 43.52 10.94 17.66 25.58 33.85 13.36 33.20 13.45

TABLE III
COMPARISON WITH MULTI-LEVEL MAPPING [15] REPORTED RESULTS

fr2/desk fr3/long office household fr3/nostructure texture near withloop fr3/structure texture far
density(%) error(%) density(%) error(%) density(%) error(%) density(%) error(%)

Multi-Level Mapping [15] 26 17 23 20 41 6.2 63 2.7
Ours 28 11 37 11 32 5.2 49 5.3

TABLE IV
RUN-TIME PER FRAME(MS) (FPS) ON TX2

640× 480 512× 384 320× 240
REMODE [10] 53.0(18.9) 22.0(45) 11.6(86.2)
VI-MEAN [9] 209.5(4.8) 93.8(10.7) 52.1(19.2)

OURS 134.8(7.4) 81.6(12.3) 30.6(32.7)

Relative error is defined as

1

|V|
∑
i∈V

|di − dgti |
dgti

, (10)

where V is the set of valid estimations, di and dgti are
estimated depth and corresponding ground truth, respectively.

The results are shown in Table II. Note that our method
generates one depth map for every input frame while the
other two only estimate the depth for some keyframes. By
using the probabilistic model to detect outlier estimations,
our method achieves the least relative error throughout all
the sequences. The output density is lower than that of VI-
MEAN [9] because the temporal fusion needs several frames
to converge and the datasets contain lots of rotation move-
ment that with small image overlaps. On the other hand, VI-
MEAN [9] detects outliers by its matching cost thus cannot
effectively detect all outliers leading to denser but inaccurate
depth estimations. In robotic operations, where robots mostly
move forward and image overlaps are large, our method
generates depth maps with much higher densities as shown in
Fig. 8 and the supplementary video. REMODE [10] estimates
per-pixel depth values without global information before
smoothing. In ICL-NUIM kt0 sequence, the camera rotates
rapidly and REMODE [10] cannot generate depth estimation
because of limited per-pixel information.

2) Efficiency Evaluation: Efficiency on portable devices
is important for mobile robots. We test the efficiency of
dense mapping methods on a Nvidia Jetson TX2 with a 256-
core GPU and 8 GB memory. Efficiency is measured by
the average time to process one frame. All the parameters
stay the same as in previous experiments and multi-resolution
images are used to evaluate the scalability of each method.

Results are shown in Table IV. Note that our method

generates dense depth estimation for every input image
and achieves real-time performance on portable devices.
Although our method uses global optimization, messages can
be updated in parallel. The proposed quadtree based pixel
selection and dynamic belief propagation enable our method
to generate accurate depth maps in real-time. In SGM [11],
although different cost aggregation paths can be calculated
in parallel, pixels in the same path are updated sequentially,
leading to a suboptimal usage of GPU parallel computing.

C. Comparison with Multi-level Mapping

Our method is compared with Multi-level mapping [15]
algorithm since both methods use the quadtree to find
the suitable resolution for depth estimation. We follow the
definition of the error and the density as used in Multi-
level mapping [15]. The error is defined as the relative
inverse depth error and the density is the fraction of pixels
with relative inverse errors less than 10%. The result is
shown in Table III. For most of the cases, the accuracy
of our method is higher than that of Multi-level map-
ping [15] because the depth of a pixel is estimated using
global information. In fr3/nostructure texture near withloop
and fr3/structure texture far, the environments consist of rich
texture and planar structure so that Multi-level mapping [15]
performs well by using local patches.

D. Test on Onboard UAV

Fig. 7. The drone we use is equipped with the minimum sensor set of a
monocular camera and an IMU that supports autonomous flights.

To evaluate the usability of our method on a UAV, we use
the TSDF fused dense map to support autonomous flight.
Fused voxels which contain the estimated surface are used
for obstacle avoidance during the flight. Both the indoor and
outdoor experiments are tested to prove the accuracy and



Fig. 8. We test our method onboard a UAV in a variety of environments
from outdoor to indoor. The left column is the third view during the flight
and the drone is highlighted in red circles. The middle and the right column
are onboard cameras and the corresponding depth estimation. Depth maps
are color coded as Fig. 3(d), with black pixels indicating invalid estimations
masked by probabilistic depth fusion.

density of our dense mapping system. The UAV platform
is shown in Fig. 7 that consists of an i7 computer and a
Nvidia Jetson TX1. Our dense mapping system runs on TX1
and the other components including VINS [3] and planning
run on the i7 computer. A camera and an IMU are all the
sensors used for the autonomous flight. Input images are
downsampled to 376 × 240 for real-time performance with
a 10Hz output.

The indoor environment consists of repeated patterns like
the safety net, and textureless surfaces like walls. Outdoor
experiments are conducted in a small woods area where
obstacles are thin and are hard to reconstruct. Snapshots
during the flight are shown in Fig. 8 and more results can
be found in the supplementary video. As can be seen in the
results, our method generates depth maps that are dense and
accurate for autonomous flight.

VII. CONCLUSION

In this paper, we propose a monocular dense mapping
method that generates high-quality depth maps and dense
3D maps using images and corresponding camera poses.
The output of the system can be used to reconstruct the
environment in real-time and support autonomous navigation.
Quadtree-selecting and dynamic belief propagation are pro-
posed to speed up the mapping and generate accurate depth
estimations. Both the public datasets and real-time onboard
experiments show that our method generates depth maps in
high quality and with high efficiency.

In the future work, we will focus on building large-
scale, drift-free 3D dense maps by fusing depth maps with
odometry systems that have loop closure abilities. Such a
system is important for long-term robotic applications.
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